Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Al-Mansoori MH, Mahdi MA
    Appl Opt, 2009 Jun 20;48(18):3424-8.
    PMID: 19543350
    This paper presents the characteristics of a multiwavelength L-band Brillouin-erbium comb fiber laser with a preamplified Brillouin pump (BP) power technique at low pumping powers. The issue of erbium-doped fiber gain depletion and Brillouin gain saturation are resolved by the proposed structure. For long single-mode fiber length, the Stokes line emission occurs at low pumping powers because of the high strength of spontaneous Brillouin scattering, which provides a strong seed for coherent regenerative amplification of the Stokes line in the laser cavity. The laser structure achieves a low threshold power of 17 mW and is able to produce high number of output channels at low pumping powers. We experimentally show that the fiber laser structure can produce up to 37 channels at 55 and 0.045 mW of 1480 nm pump and BP powers, respectively.
  2. Al-Mansoori MH, Mahdi MA
    Opt Express, 2008 May 26;16(11):7649-54.
    PMID: 18545472
    We demonstrate an enhanced multiwavelength L-band Brillouin-erbium fiber laser (BEFL), in which the Brillouin pump is pre-amplified before entering the single-mode fiber. The Brillouin pump pre-amplification provided by the Erbium-doped fiber has created higher intensity of Brillouin Stokes line generated in the single-mode fiber that leads to the homogenous gain saturation. Thus the built-up of self-lasing cavity modes is suppressed in a wider wavelength range. In contrary to the conventional linear-cavity BEFL, the number of output channels is enhanced within the same tuning range.
  3. Shee YG, Al-Mansoori MH, Ismail A, Hitam S, Mahdi MA
    Opt Express, 2011 Jan 31;19(3):1699-706.
    PMID: 21368983 DOI: 10.1364/OE.19.001699
    We demonstrate a multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing. The wider channel spacing is realized by circulating the odd-order Stokes signals in the Brillouin gain medium through a four-port circulator. The circulated odd-order Stokes signals are amplified by the Brillouin gain and thus produce even-order Stokes signals at the output. These signals are then amplified by erbium gain block to form a ring-cavity laser. Ten channels with 0.174 nm spacing that are generated at 0.5 mW Brillouin pump power and 150 mW pump power at 1480 nm can be tuned from 1556 nm to 1564 nm. The minimum optical signal-to-noise ratio of the generated output channels is 30 dB with maximum power fluctuations of ±0.5 dB.
  4. Zamzuri AK, Al-Mansoori MH, Samsuri NM, Mahdi MA
    Appl Opt, 2010 Jun 20;49(18):3506-10.
    PMID: 20563203 DOI: 10.1364/AO.49.003506
    We demonstrate the generation of multiple Brillouin Stokes lines generation assisted by Rayleigh scattering in Raman fiber laser. The linear cavity is utilized to take advantage of the Rayleigh scattering effect, and it also produces two strong spectral peaks at 1555 and 1565nm. Under a strong pumping condition, the Rayleigh backscatters contribute to the oscillation efficiency, which increases the Brillouin Stokes lines intensity between these two wavelength ranges. The multiple Stokes lines get stronger by suppressing the buildup of free-running longitudinal modes in the laser structure.
  5. Ajiya M, Mahdi MA, Al-Mansoori MH, Hitam S, Mokhtar M
    Opt Express, 2009 Apr 13;17(8):5944-52.
    PMID: 19365413
    We experimentally demonstrate a simple widely tunable multiwavelength Brillouin/Erbium fiber laser that can be tuned over the entire C-band, thereby greatly improving the tuning range limitation faced by the previous Brillouin-erbium fiber laser architectures. Tuning range of 39 nm from 1527 nm to 1566 nm, which is only limited by the amplification bandwidth of the erbium gain was successfully achieved. At Brillouin pump wavelength of 1550 nm and 1480 nm laser pump and Brillouin pump powers of 130 mW and 2 mW respectively, all the generated output channels have peak power above 0 dBm, with the first output channel having a peak power of 8.52 dBm. The experimental set up that consists of only 4 optical components, is simple, devoid of the complex structure employed previously to enhance the tunability and feedback mechanism normally associated with multiwavelength Brillouin-erbium fiber laser sources. The generated output channels are stable, rigidly separated by 10 GHz (0.08 nm).
  6. Mahdi MA, Sheih SJ, Adikan FR
    Opt Express, 2009 Jun 08;17(12):10069-75.
    PMID: 19506658
    We demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value. This gain penalty must be taken into consideration in order to obtain the accurate gain level. By taking the average gain penalty within the dynamic gain range, the targeted output power is set higher than the desired level. Thus, the errors are significantly reduced to less than 0.15 dB from 15 dB to 30 dB desired gain values.
  7. Zamzuri AK, Md Ali MI, Ahmad A, Mohamad R, Mahdi MA
    Opt Lett, 2006 Apr 01;31(7):918-20.
    PMID: 16599211
    We demonstrate a multiple-wavelength Brillouin comb laser with cooperative Rayleigh scattering that uses Raman amplification in dispersion-compensating fiber. The laser resonator is a linear cavity formed by reflector at each end of the dispersion-compensating fiber to improve the reflectivity of the Brillouin Stokes comb. Multiple Brillouin Stokes generation has been improved in terms of optical signal-to-noise ratio and power-level fluctuation between neighboring channels. Furthermore, the linewidth of the Brillouin Stokes is uniform within the laser output bandwidth.
  8. Sadrolhosseini AR, Noor AS, Bahrami A, Lim HN, Talib ZA, Mahdi MA
    PLoS One, 2014;9(4):e93962.
    PMID: 24733263 DOI: 10.1371/journal.pone.0093962
    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.
  9. Mamdoohi G, Sarmani AR, Abas AF, Yaacob MH, Mokhtar M, Mahdi MA
    Opt Express, 2013 Aug 12;21(16):18724-32.
    PMID: 23938788 DOI: 10.1364/OE.21.018724
    We demonstrate a tunable multi-wavelength Brillouin-Raman fiber laser with 20 GHz wavelength spacing. The setup is arranged in a linear cavity by employing 7.2 and 11 km dispersion compensating fibers (DCF) in addition to a 30 cm Bismuth-oxide erbium doped fiber. In this experiment, for the purpose of increasing the Stokes lines, it is necessary to optimize Raman pump power and Brillouin pump power together with its corresponding wavelengths. At the specific Brillouin pump wavelength, it is found that the longer length of 11 km DCF with optimized parameters results in larger number of Stokes combs and optical signal to noise ratios (OSNRs). In this case, a total of 195 Brillouin Stokes combs are produced across 28 nm bandwidth at Brillouin pump power of -2 dBm and Raman pump power of 1000 mW. In addition, all Brillouin Stokes signals exhibit an average OSNR of 26 dB.
  10. Shee YG, Al-Mansoori MH, Yaakob S, Man A, Zamzuri AK, Adikan FR, et al.
    Opt Express, 2012 Jun 4;20(12):13402-8.
    PMID: 22714367 DOI: 10.1364/OE.20.013402
    An all-optical generation of a millimeter wave carrier from a multiwavelength Brillouin-erbium fiber laser is presented. Four-channel output with spacing of about 21.5 GHz is generated from the fiber laser by controlling the gain in the cavity. A dual-wavelength signal with spacing correspondent to six orders of Brillouin frequency shift is obtained by suppressing the two channels at the middle. Heterodyning these signals at the high-speed photodetector produces a millimeter wave carrier at 64.17 GHz. Temperature dependence characteristic of Brillouin frequency shift realize the flexibility of generated millimeter wave frequency to be tuned at 6.6 MHz/ °C.
  11. Al-Asadi HA, Abu Bakar MH, Al-Mansoori MH, Adikan FR, Mahdi MA
    Opt Express, 2011 Dec 5;19(25):25741-8.
    PMID: 22273966 DOI: 10.1364/OE.19.025741
    This paper details a theoretical modeling of Brillouin ring fiber laser which incorporates the interaction between multiple Brillouin Stokes signals. The ring cavity was pumped at several Brillouin pump (BP) powers and the output was measured through an optical coupler with various coupling ratios. The first-order Brillouin Stokes signal was saturated with the presence of the second-order Stokes signal in the cavity as a result of energy transfer between them. The outcome of the study found that the optimum point for the first-order Stokes wave performance is at laser power reduction of 10%. Resultantly, at the optimum output coupling ratio of 90%, the BFL was able to produce 19.2 mW output power at BP power and Brillouin threshold power of 60 and 21.3 mW respectively. The findings also exhibited the feasibility of the theoretical models application to ring-type Brillouin fiber laser of various design parameters.
  12. Zamiri R, Zakaria A, Abbastabar H, Darroudi M, Husin MS, Mahdi MA
    Int J Nanomedicine, 2011;6:565-8.
    PMID: 21698083 DOI: 10.2147/IJN.S16384
    Silver nanoparticles were fabricated by ablation of a pure silver plate immersed in castor oil. A Nd:YAG-pulsed Q-switch laser with 1064-nm wavelength and 10-Hz frequency was used to ablate the plate for 10 minutes. The sample was characterized by ultraviolet-visible, atomic absorption, Fourier transform-infrared spectroscopies, and transmission electron microscopy. The results of the fabricated sample showed that the nanoparticles in castor oil were about 5-nm in diameter, well dispersed, and showed stability for a long period of time.
  13. Rahman ZA, Hitam S, Al-Mansoori MH, Abas AF, Mahdi MA
    Opt Express, 2011 Oct 24;19(22):21238-45.
    PMID: 22108976 DOI: 10.1364/OE.19.021238
    A multiwavelength widely tunable Brillouin optical comb with an enhanced reverse-S-shaped feedback coupling assisted by out-of-cavity optical amplifier is demonstrated. The enhancement is done by locating the amplifier and the Brillouin pump into the reverse-S-shaped fiber section. The oscillating modes in the cavity are directly influenced solely by the Brillouin gain. A wide tuning range of 45 nm is obtained that is only limited by the erbium amplification bandwidth. An average of eleven laser lines that can be tuned to over 45 nm wavelengths is obtained at 40% optimum output coupling ratio.
  14. Sarmani AR, Abu Bakar MH, Bakar AA, Adikan FR, Mahdi MA
    Opt Express, 2011 Jul 18;19(15):14152-9.
    PMID: 21934778 DOI: 10.1364/OE.19.014152
    We report an ultra-long Raman laser that implemented a variable pumping scheme in backward and forward configurations. Rayleigh backscattering effects were realized in the 51 km fiber length that functioned as a virtual mirror at one fiber end. With the employment of a fiber Bragg grating that has a peak reflection wavelength at 1553.3 nm, spectral broadening effects were observed. These occurred as the pump power level was diverted more to the forward direction. Owing to this fact, a maximum width of 0.9 nm was measured at 100% forward pumping. The obtained results show that the efficient exploitation of four-wave mixing interactions as well as strong Rayleigh backscattering are beneficial to influence the lasing performances. Both of these nonlinear responses can be adjusted by varying pumping distributions along the fiber longitudinal dimension.
  15. Al-Asadi HA, Al-Mansoori MH, Hitam S, Saripan MI, Mahdi MA
    Opt Express, 2011 Jan 31;19(3):1842-53.
    PMID: 21368999 DOI: 10.1364/OE.19.001842
    We implement a particle swarm optimization (PSO) algorithm to characterize stimulated Brillouin scattering phenomena in optical fibers. The explicit and strong dependence of the threshold exponential gain on the numerical aperture, the pump laser wavelength and the optical loss coefficient are presented. The proposed PSO model is also evaluated with the localized, nonfluctuating source model and the distributed (non-localized) fluctuating source model. Using our model, for fiber lengths from 1 km to 29 km, the calculated threshold exponential gain of stimulated Brillouin scattering is gradually decreased from 17.4 to 14.6 respectively. The theoretical results of Brillouin threshold power predicted by the proposed PSO model show a good agreement with the experimental results for different fiber lengths from 1 km to 12 km.
  16. Zamiri R, Zakaria A, Ahangar HA, Sadrolhosseini AR, Mahdi MA
    Int J Mol Sci, 2010;11(11):4764-70.
    PMID: 21151470 DOI: 10.3390/ijms11114764
    In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm coconut oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time.
  17. Shee YG, Mahdi MA, Al-Mansoori MH, Yaakob S, Mohamed R, Zamzuri AK, et al.
    Opt Lett, 2010 May 1;35(9):1461-3.
    PMID: 20436603 DOI: 10.1364/OL.35.001461
    An all-optical generation of a microwave carrier at 21 GHz that incorporates a double-Brillouin frequency shifter is presented. The frequency shift of approximately 21 GHz is achieved by generating the second-order Brillouin Stokes signal from the Brillouin pump. This is accomplished through the circulation and isolation of its first-order Stokes signal in the optical fiber. The Brillouin pump signal is heterodyned with its second-order Brillouin Stokes signal at a high-speed photodetector, and the output beating frequency is equal to the offset between these two signals. The generated microwave carrier is measured at 21.3968 GHz, and the carrier phase noise as low as -58.67 dBc/Hz is achieved.
  18. Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW, Mahdi MA
    Int J Nanomedicine, 2011;6:71-5.
    PMID: 21289983 DOI: 10.2147/IJN.S14005
    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.
  19. Al-Asadi HA, Al-Mansoori MH, Ajiya M, Hitam S, Saripan MI, Mahdi MA
    Opt Express, 2010 Oct 11;18(21):22339-47.
    PMID: 20941134 DOI: 10.1364/OE.18.022339
    We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
  20. Shee YG, Al-Mansoori MH, Ismail A, Hitam S, Mahdi MA
    Appl Opt, 2010 Jul 10;49(20):3956-9.
    PMID: 20648173 DOI: 10.1364/AO.49.003956
    We demonstrate a simple configuration for generating a double Brillouin frequency shift through the circulation of an odd-order Brillouin Stokes signal. It is operated based on cascaded Brillouin scattering in single-mode optical fibers that behave as the Brillouin gain media. A four-port circulator is incorporated into the setup to circulate the odd-order Brillouin Stokes signal in the fiber. It thus initiates a higher order Brillouin Stokes signal, which is double Brillouin frequency downshifted from the input signal. For the 5 km long fiber, the Brillouin pump power at 23 mW gives a clean output spectrum with 30 dB sideband suppression ratio. The output signal is 0.174 nm or approximately 21.7 GHz downshifted from the input signal.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links