Displaying all 5 publications

Abstract:
Sort:
  1. Agarwal T, Annamalai N, Maiti TK, Arsad H
    Gene, 2016 Apr 10;580(1):17-25.
    PMID: 26748242 DOI: 10.1016/j.gene.2015.12.066
    DAPK3 belongs to family of DAPK (death-associated protein kinases) and is involved in the regulation of progression of the cell cycle, cell proliferation, apoptosis and autophagy. It is considered as a tumor suppressor kinase, suggesting the loss of its function in case of certain specific mutations. The T112M, D161N and P216S mutations in DAPK3 have been observed in cancer patients. These DAPK3 mutants have been associated with very low kinase activity, which results in the cellular progression towards cancer. However, a clear understanding of the structural and biophysical variations that occur in DAPK3 with these mutations, resulting in the decreased kinase activity has yet not been deciphered. We performed a molecular dynamic simulation study to investigate such structural variations. Our results revealed that mutations caused a significant structural variation in DAPK3, majorly concentrated in the flexible loops that form part of the ATP binding pocket. Interestingly, D161N and P216S mutations collapsed the ATP binding pocket through flexible loops invasion, hindering ATP binding which resulted in very low kinase activity. On the contrary, T112M mutant DAPK3 reduces ATP binding potential through outward distortion of flexible loops. In addition, the mutant lacked characteristic features of the active protein kinase including proper interaction between HR/FD and DFG motifs, well structured hydrophobic spine and Lys42-Glu64 salt bridge interaction. These observations could possibly explain the underlying mechanism associated with the loss of kinase activity with T112M, D161N and P216S mutation in DAPK3.
  2. Agarwal T, Annamalai N, Khursheed A, Maiti TK, Arsad HB, Siddiqui MH
    J Mol Graph Model, 2015 Sep;61:141-9.
    PMID: 26245696 DOI: 10.1016/j.jmgm.2015.07.003
    Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) - Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.
  3. Agarwal T, Tan SA, Rathnam Vuppaladadium SS, Sajja T, Maiti TK
    Int J Biomater, 2023;2023:2227509.
    PMID: 36909982 DOI: 10.1155/2023/2227509
    The present study outlines the evaluation of textile materials that are currently in the market for cell culture applications. By using normal LaserJet printing techniques, we created the substrates, which were then characterized physicochemically and biologically. In particular, (i) we found that the weave pattern and (ii) the chemical nature of the textiles significantly influenced the behaviour of the cells. Textiles with closely knitted fibers and cell adhesion motifs, exhibited better cell adhesion and proliferation over a period of 7 days. All the substrates supported good viability of cells (>80%). We believe that these aspects make commercially available textiles as a potential candidate for large-scale culture of adherent cells.
  4. Agarwal T, Chiesa I, Presutti D, Irawan V, Vajanthri KY, Costantini M, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Apr;123:112005.
    PMID: 33812625 DOI: 10.1016/j.msec.2021.112005
    Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
  5. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links