Displaying all 7 publications

Abstract:
Sort:
  1. Mohamed R, Shabaruddin FH, Azzeri A, McDonald SA, Dahlui M
    Journal of virus eradication, 2019 Nov 04;5(4):253.
    PMID: 31754450
  2. McDonald SA, Mohamed R, Dahlui M, Naning H, Kamarulzaman A
    BMC Infect Dis, 2014;14:564.
    PMID: 25377240 DOI: 10.1186/s12879-014-0564-6
    Collecting adequate information on key epidemiological indicators is a prerequisite to informing a public health response to reduce the impact of hepatitis C virus (HCV) infection in Malaysia. Our goal was to overcome the acute data shortage typical of low/middle income countries using statistical modelling to estimate the national HCV prevalence and the distribution over transmission pathways as of the end of 2009.
  3. McDonald SA, Dahlui M, Mohamed R, Naning H, Shabaruddin FH, Kamarulzaman A
    PLoS One, 2015;10(6):e0128091.
    PMID: 26042425 DOI: 10.1371/journal.pone.0128091
    BACKGROUND: The prevalence of hepatitis C virus (HCV) infection in Malaysia has been estimated at 2.5% of the adult population. Our objective, satisfying one of the directives of the WHO Framework for Global Action on Viral Hepatitis, was to forecast the HCV disease burden in Malaysia using modelling methods.

    METHODS: An age-structured multi-state Markov model was developed to simulate the natural history of HCV infection. We tested three historical incidence scenarios that would give rise to the estimated prevalence in 2009, and calculated the incidence of cirrhosis, end-stage liver disease, and death, and disability-adjusted life-years (DALYs) under each scenario, to the year 2039. In the baseline scenario, current antiviral treatment levels were extended from 2014 to the end of the simulation period. To estimate the disease burden averted under current sustained virological response rates and treatment levels, the baseline scenario was compared to a counterfactual scenario in which no past or future treatment is assumed.

    RESULTS: In the baseline scenario, the projected disease burden for the year 2039 is 94,900 DALYs/year (95% credible interval (CrI): 77,100 to 124,500), with 2,002 (95% CrI: 1340 to 3040) and 540 (95% CrI: 251 to 1,030) individuals predicted to develop decompensated cirrhosis and hepatocellular carcinoma, respectively, in that year. Although current treatment practice is estimated to avert a cumulative total of 2,200 deaths from DC or HCC, a cumulative total of 63,900 HCV-related deaths is projected by 2039.

    CONCLUSIONS: The HCV-related disease burden is already high and is forecast to rise steeply over the coming decades under current levels of antiviral treatment. Increased governmental resources to improve HCV screening and treatment rates and to reduce transmission are essential to address the high projected HCV disease burden in Malaysia.

  4. Hiebert L, Azzeri A, Dahlui M, Hecht R, Mohamed R, Hana Shabaruddin F, et al.
    Subst Use Misuse, 2020;55(6):871-877.
    PMID: 31933411 DOI: 10.1080/10826084.2019.1708943
    Background: As hepatitis C elimination efforts are launched, national strategies for screening and treatment scale-up in countries, such as Malaysia, must be designed and implemented. Strategic information, including estimates of the total number of patients chronically-infected with hepatitis C virus (HCV) and the size of key populations, such as people who inject drugs (PWID), is critical to informing these efforts. For Malaysia, the estimate of the PWID population size most frequently reported in global systematic reviews is for the year 2009. Objectives: To support ongoing national HCV planning efforts, we aimed to estimate the national population size of active PWID in Malaysia, for the years 2014 and 2017. Methods: To estimate the PWID population size, we applied standard benchmark-multiplier methodology, frequently used for PWID population size estimation, and extended it by adjusting for cessation of injecting drug use within the benchmark and calculating statistical uncertainty intervals. Results: The estimated active PWID population size was 153,000 (95% uncertainty interval (UI): 136,000-172,000) for 2014 and 156,000 (95% UI: 137,000-188,000) for 2017. Conclusions/importance: This updated estimate of the active PWID population size in Malaysia will help inform effective planning for the scale-up of HCV screening and treatment services. The proposed methodology is applicable to other countries that maintain national HIV registries and have conducted Integrated Biological and Behavioral Surveys among active PWID.
  5. McDonald SA, Azzeri A, Shabaruddin FH, Dahlui M, Tan SS, Kamarulzaman A, et al.
    Appl Health Econ Health Policy, 2018 12;16(6):847-857.
    PMID: 30145775 DOI: 10.1007/s40258-018-0425-3
    INTRODUCTION: The World Health Organisation (WHO) has set ambitious goals to reduce the global disease burden associated with, and eventually eliminate, viral hepatitis.

    OBJECTIVE: To assist with achieving these goals and to inform the development of a national strategic plan for Malaysia, we estimated the long-term burden incurred by the care and management of patients with chronic hepatitis C virus (HCV) infection. We compared cumulative healthcare costs and disease burden under different treatment cascade scenarios.

    METHODS: We attached direct costs for the management/care of chronically HCV-infected patients to a previously developed clinical disease progression model. Under assumptions regarding disease stage-specific proportions of model-predicted HCV patients within care, annual numbers of patients initiated on antiviral treatment and distribution of treatments over stage, we projected the healthcare costs and disease burden [in disability-adjusted life-years (DALY)] in 2018-2040 under four treatment scenarios: (A) no treatment/baseline; (B) pre-2018 standard of care (pegylated interferon/ribavirin); (C) gradual scale-up in direct-acting antiviral (DAA) treatment uptake that does not meet the WHO 2030 treatment uptake target; (D) scale-up in DAA treatment uptake that meets the WHO 2030 target.

    RESULTS: Scenario D, while achieving the WHO 2030 target and averting 253,500 DALYs compared with the pre-2018 standard of care B, incurred the highest direct patient costs over the period 2018-2030: US$890 million (95% uncertainty interval 653-1271). When including screening programme costs, the total cost was estimated at US$952 million, which was 12% higher than the estimated total cost of scenario C.

    CONCLUSIONS: The scale-up to meet the WHO 2030 target may be achievable with appropriately high governmental commitment to the expansion of HCV screening to bring sufficient undiagnosed chronically infected patients into the treatment pathway.

  6. Azzeri A, Dahlui M, Mohamed R, McDonald SA, Jaafar H, Shabaruddin FH
    Front Public Health, 2023;11:1114560.
    PMID: 36935675 DOI: 10.3389/fpubh.2023.1114560
    INTRODUCTION: A scaled-up treatment cascade with direct-acting antiviral (DAA) therapy is necessary to achieve global WHO targets for hepatitis C virus (HCV) elimination in Malaysia. Recently, limited access to sofosbuvir/daclatasvir (SOF/DAC) is available through compulsory licensing, with access to sofosbuvir/velpatasvir (SOF/VEL) expected through voluntary licensing due to recent agreements. SOF/VEL has superior clinical outcomes but has higher drug acquisition costs compared to SOF/DAC. A stratified treatment cascade might be the most cost-efficient approach for Malaysia whereby all HCV patients are treated with SOF/DAC except for patients with cirrhosis who are treated with SOF/VEL.

    METHODS: This study aimed to conduct a 5-year budget impact analysis of the proposed stratified treatment cascade for HCV treatment in Malaysia. A disease progression model that was developed based on model-predicted HCV epidemiology data was used for the analysis, where all HCV patients in scenario A were treated with SOF/DAC for all disease stages while in scenario B, SOF/DAC was used only for non-cirrhotic patients and SOF/VEL was used for the cirrhotic patients. Healthcare costs associated with DAA therapy and disease stage monitoring were included to estimate the downstream cost implications.

    RESULTS: The stratified treatment cascade with 109 in Scenario B was found to be cost-saving compared to Scenario A. The cumulative savings for the stratified treatment cascade was USD 1.4 million over 5 years.

    DISCUSSION: A stratified treatment cascade with SOF/VEL was expected to be cost-saving and can result in a budget impact reduction in overall healthcare expenditure in Malaysia.

  7. Hiebert L, Hecht R, Soe-Lin S, Mohamed R, Shabaruddin FH, Syed Mansor SM, et al.
    Value Health Reg Issues, 2019 May;18:112-120.
    PMID: 30921591 DOI: 10.1016/j.vhri.2018.12.005
    BACKGROUND: In Malaysia, more than 330 000 individuals are estimated to be chronically infected with hepatitis C virus (HCV), but less than 2% have been treated to date.

    OBJECTIVES: To estimate the required coverage and costs of a national screening strategy to inform the launch of an HCV elimination program.

    METHODS: We designed an HCV screening strategy based on a "stepwise" approach. This approach relied on targeting of people who inject drugs in the early years, with delayed onset of widespread general population screening. Annual coverage requirements and associated costs were estimated to ensure that the World Health Organization elimination treatment targets were met.

    RESULTS: In total, 6 million individuals would have to be screened between 2018 and 2030. Targeting of people who inject drugs in the early years would limit annual screening coverage to less than 1 million individuals from 2018 to 2026. General population screening would have to be launched by 2026. Total costs were estimated at MYR 222 million ($58 million). Proportional to coverage targets, 60% of program costs would fall from 2026 to 2030.

    CONCLUSIONS: This exercise was one of the first attempts to conduct a detailed analysis of the required screening coverage and costs of a national HCV elimination strategy. These findings suggest that the stepwise approach could delay the onset of general population screening by more than 5 years after the program's launch. This delay would allow additional time to mobilize investments required for a successful general population screening program and also minimize program costs. This strategy prototype could inform the design of effective screening strategies in other countries.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links