Displaying all 5 publications

Abstract:
Sort:
  1. Ward HA, Gayle A, Jakszyn P, Merritt M, Melin B, Freisling H, et al.
    Eur J Cancer Prev, 2018 Jul;27(4):379-383.
    PMID: 27845960 DOI: 10.1097/CEJ.0000000000000331
    Diets high in red or processed meat have been associated positively with some cancers, and several possible underlying mechanisms have been proposed, including iron-related pathways. However, the role of meat intake in adult glioma risk has yielded conflicting findings because of small sample sizes and heterogeneous tumour classifications. The aim of this study was to examine red meat, processed meat and iron intake in relation to glioma risk in the European Prospective Investigation into Cancer and Nutrition study. In this prospective cohort study, 408 751 individuals from nine European countries completed demographic and dietary questionnaires at recruitment. Multivariable Cox proportional hazards models were used to examine intake of red meat, processed meat, total dietary iron and haem iron in relation to incident glioma. During an average follow-up of 14.1 years, 688 incident glioma cases were diagnosed. There was no evidence that any of the meat variables (red, processed meat or subtypes of meat) or iron (total or haem) were associated with glioma; results were unchanged when the first 2 years of follow-up were excluded. This study suggests that there is no association between meat or iron intake and adult glioma. This is the largest prospective analysis of meat and iron in relation to glioma and as such provides a substantial contribution to a limited and inconsistent literature.
  2. Costas L, Lujan-Barroso L, Benavente Y, Allen NE, Amiano P, Ardanaz E, et al.
    Am J Epidemiol, 2019 Feb 01;188(2):274-281.
    PMID: 30481275 DOI: 10.1093/aje/kwy259
    The role of hormonal factors in the etiology of lymphoid neoplasms remains unclear. Previous studies have yielded conflicting results, have lacked sufficient statistical power to assess many lymphoma subtypes, or have lacked detailed information on relevant exposures. Within the European Prospective Investigation Into Cancer and Nutrition cohort, we analyzed comprehensive data on reproductive factors and exogenous hormone use collected at baseline (1992-2000) among 343,458 women, including data on 1,427 incident cases of B-cell non-Hodgkin lymphoma (NHL) and its major subtypes identified after a mean follow-up period of 14 years (through 2015). We estimated hazard ratios and 95% confidence intervals using multivariable proportional hazards modeling. Overall, we observed no statistically significant associations between parity, age at first birth, breastfeeding, oral contraceptive use, or ever use of postmenopausal hormone therapy and risk of B-cell NHL or its subtypes. Women who had undergone surgical menopause had a 51% higher risk of B-cell NHL (based on 67 cases) than women with natural menopause (hazard ratio = 1.51, 95% confidence interval: 1.17, 1.94). Given that this result may have been due to chance, our results provide little support for the hypothesis that sex hormones play a role in lymphomagenesis.
  3. Campanella G, Gunter MJ, Polidoro S, Krogh V, Palli D, Panico S, et al.
    Int J Obes (Lond), 2018 Dec;42(12):2022-2035.
    PMID: 29713043 DOI: 10.1038/s41366-018-0064-7
    BACKGROUND: Obesity is an established risk factor for several common chronic diseases such as breast and colorectal cancer, metabolic and cardiovascular diseases; however, the biological basis for these relationships is not fully understood. To explore the association of obesity with these conditions, we investigated peripheral blood leucocyte (PBL) DNA methylation markers for adiposity and their contribution to risk of incident breast and colorectal cancer and myocardial infarction.

    METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population.

    RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P 

  4. Perez-Cornago A, Appleby PN, Tipper S, Key TJ, Allen NE, Nieters A, et al.
    Int J Cancer, 2017 Mar 01;140(5):1111-1118.
    PMID: 27870006 DOI: 10.1002/ijc.30528
    Insulin-like growth factor (IGF)-I has cancer promoting activities. However, the hypothesis that circulating IGF-I concentration is related to risk of lymphoma overall or its subtypes has not been examined prospectively. IGF-I concentration was measured in pre-diagnostic plasma samples from a nested case-control study of 1,072 cases of lymphoid malignancies and 1,072 individually matched controls from the European Prospective Investigation into Cancer and Nutrition. Odds ratios (ORs) and confidence intervals (CIs) for lymphoma were calculated using conditional logistic regression. IGF-I concentration was not associated with overall lymphoma risk (multivariable-adjusted OR for highest versus lowest third = 0.77 [95% CI = 0.57-1.03], ptrend  = 0.06). There was no statistical evidence of heterogeneity in this association with IGF-I by sex, age at blood collection, time between blood collection and diagnosis, age at diagnosis, or body mass index (pheterogeneity for all  ≥ 0.05). There were no associations between IGF-I concentration and risk for specific BCL subtypes, T-cell lymphoma or Hodgkin lymphoma, although number of cases were small. In this European population, IGF-I concentration was not associated with risk of overall lymphoma. This study provides the first prospective evidence on circulating IGF-I concentrations and risk of lymphoma. Further prospective data are required to examine associations of IGF-I concentrations with lymphoma subtypes.
  5. Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, et al.
    JAMA, 2015 Apr 07;313(13):1347-61.
    PMID: 25849179 DOI: 10.1001/jama.2014.5985
    IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists.

    OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2.

    DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk.

    EXPOSURES: Mutations of BRCA1 or BRCA2.

    MAIN OUTCOMES AND MEASURES: Breast and ovarian cancer risks.

    RESULTS: Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers.

    CONCLUSIONS AND RELEVANCE: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links