Displaying all 4 publications

Abstract:
Sort:
  1. Mirzasadeghi A, Narayanan SS, Ng MH, Sanaei R, Cheng CH, Bajuri MY, et al.
    Biomed Mater Eng, 2014;24(6):2177-86.
    PMID: 25226916 DOI: 10.3233/BME-141029
    The application of bone substitutes and cements has a long standing history in augmenting fractures as a complement to routine fracture fixation techniques. Nevertheless, such use is almost always in conjunction with definite means of fracture fixation such as intramedullary pins or bone plates. The idea of using biomaterials as the primary fixation bears the possibility of simultaneous fixation and bone enhancement. Intramedullary recruitment of bone cements is suggested in this study to achieve this goal. However, as the method needs primary testings in animal models before human implementation, and since the degree of ambulation is not predictable in animals, this pilot study only evaluates the outcomes regarding the feasibility and safety of this method in the presence of primary bone fixators. A number of two sheep were used in this study. Tibial transverse osteotomies were performed in both animals followed by external skeletal fixation. The medullary canals, which have already been prepared by removing the marrow through proximal and distal drill holes, were then injected with calcium phosphate cement (CPC). The outcomes were evaluated postoperatively by standard survey radiographs, morphology, histology and biomechanical testings. Healing processes appeared uncomplicated until week four where one bone fracture recurred due to external fixator failure. The results showed 56% and 48% cortical thickening, compared to the opposite site, in the fracture site and proximal and distal diaphyses respectively. This bone augmentative effect resulted in 264% increase in bending strength of the fracture site and 148% increase of the same value in the adjacent areas of diaphyses. In conclusion, IMCO, using CPC in tibia of sheep, is safe and biocompatible with bone physiology and healing. It possibly can carry the osteopromotive effect of the CPCs to provide a sustained source of bone augmentation throughout the diaphysis. Although the results must be considered preliminary, this method has possible advantages over conventional methods of bone fixation at least in bones with compromised quality (i.e. osteoporosis and bone cysts), where rigid metal implants may jeopardize eggshell cortices.
  2. Yan L, Zhang M, Wang M, Guo Y, Zhang X, Xi J, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1504-1510.
    PMID: 31492313 DOI: 10.1166/jnn.2020.17350
    This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).
  3. Yan L, Yu J, Zhong Y, Gu Y, Ma Y, Li W, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1605-1612.
    PMID: 31492322 DOI: 10.1166/jnn.2020.17340
    The present study focuses on the microstructural and bioactive properties evolution in selective laser melting (SLM) β titanium alloys. We have applied cross-scan strategy for improving mechanical properties and lower elastic modulus of SLMed Ti-20Mg-5Ta alloys which has been shown to be altering the microstructure and refining the grain size. The cross-scan strategy can refine the microstructure and induce various deformation textures in contrast to the conventional scan strategy. The microstructures of Ti-20Mg-5Ta alloys indicate that the cross-scan strategy will yield the best mechanical properties and lower elastic modulus. The corrosion behavior of the Ti-20Mg-5Ta alloys was studied during immersion in an acellular simulated body fluid (SBF) at 37±0.50 °C for 28 days. Both the mechanical and bioactive properties showed that the novel Ti-20Mg-5Ta alloys should be ideal for bone implants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links