Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Mohamad SB, Coote L, Lane V
    PMID: 10175434 DOI: 10.3233/978-1-60750-890-8-418
    The ability of hospitals to fulfil their roles--of information processing and dissemination, and of quality patient care provider--is influenced by the availability of supporting information systems. Using computers in wards, which is a change process, introduces new working practices accompanied by attitudinal and knowledge alterations in the users. This paper suggests that as a practical approach users need to be consulted and assessed prior to the introduction of computers in their work places. A questionnaire survey, the main purpose of which was to determine the potential users' responses and to measure their computer competencies, was sent to 183 nursing staff in several hospitals. Results show that the respondents have slightly positive attitudes towards computers even though 85% of them were computer illiterate. A training strategy is needed to increase competencies and to develop more favourable attitudes, which can be monitored using four training indicators.
  2. Mohamad SB, Ong AL, Ripen AM
    Bioinformation, 2008 Jun 18;2(9):369-72.
    PMID: 18795108
    Laccase belongs to the family of blue multi-copper oxidases and are capable of oxidizing a wide range of aromatic compounds. Laccases have industrial applications in paper pulping or bleaching and hydrocarbon bioremediation as a biocatalyst. We describe the design of a laccase with broader substrate spectrum in bioremediation. The application of evolutionary trace (ET) analysis of laccase at the ligand binding site for optimal design of the enzyme is described. In this attempt, class specific sites from ET analysis were mapped onto known crystal structure of laccase. The analysis revealed 162PHE as a critical residue in structure function relationship studies.
  3. Ravichandran R, Ridzwan NFW, Mohamad SB
    J Biomol Struct Dyn, 2020 Dec 31.
    PMID: 33382017 DOI: 10.1080/07391102.2020.1867641
    The disease Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). The bacterial cell-wall consists of peptidoglycan layer maintains the cellular integrity and cell viability. The main problem resides in the cell cycle of Mycobacterium tuberculosis in its quiescent form which is not targeted by any drugs hence there is an immediate need for new antibiotics to target the cell wall. The current study deals with the dTDP-4-dehydrorahmnose reductase (RmlD) which is the final enzyme in the series of cell-wall proteins of Mtb. The RmlD is a part of Carbohydrate biosynthesis has been considered as a good drug target for the novel class of antibiotics. Our study begins with the protein structure prediction, Homology studies were conducted using the Phyre2 web server. The structure is then refined and subjected to molecular dynamics simulations for 50 ns using GROMACS. The clustering analysis has been carried out and generated 41 clusters with 2 Å as the cut-off. Blind docking virtual screening was performed against RmlD protein using the Super Natural-II database with AutoDock4.0. its results helped to screen top ligands based on best binding energies. In both dockings, there are some common residues in which the ligands are interacting and forming the Hydrogen bonds such as Asp-105, Val-158, Thr-160, Gly-161, Arg-224, Arg-256. The ligand-567 giving the best results by being in the top-3 of all the clusters in both blind docking as well as the active-site docking. Hence ligand-567 can be a potential inhibitor of RmlD which can further inhibit the cell-wall synthesis of Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
  4. Tee WV, Ripen AM, Mohamad SB
    Sci Rep, 2016 Oct 27;6:35937.
    PMID: 27786277 DOI: 10.1038/srep35937
    Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of -37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR.
  5. Mohamad SB, Ong AL, Khairuddin RF, Ripen AM
    In Silico Biol. (Gedrukt), 2010;10(3):145-53.
    PMID: 22430288 DOI: 10.3233/ISB-2010-0423
    Laccases are industrially attractive enzymes and their applications have expanded to the field of bioremediation. The challenge of today's biotechnology in enzymatic studies is to design enzymes that not only have a higher activity but are also more stable and could fit well with the condition requirements. Laccases are known to oxidize non-natural substrates like polycyclic aromatic hydrocarbons (PAHs). We suppose by increasing the hydrophobicity of laccase, it would increase the chance of the enzyme to meet the hydrophobic substrates in a contamination site, therefore increasing the bioremediation efficacy of PAHs from environment. In this attempt, the applications of evolutionary trace (ET), molecular surface accessibility and hydrophobicity analysis on laccase sequences and laccase's crystal structure (1KYA) are described for optimal design of an enzyme with higher hydrophobicity. Our analysis revealed that Q23A, Q45I, N141A, Q237V, N262L, N301V, N331A, Q360L and Q482A could be promising exchanges to be tested in mutagenesis experiments.
  6. Kandandapani S, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2020 Sep;38(14):4134-4142.
    PMID: 31552810 DOI: 10.1080/07391102.2019.1673210
    Tyrphostin 9 (Tyr 9) is a potent platelet-derived growth factor receptor (PDGFR) inhibitor, which induces apoptosis in various cancer cell types. The binding of Tyr 9 to the major transport protein, human serum albumin (HSA) was investigated using several spectroscopic techniques and molecular docking method. Fluorescence quenching titration results showed progressive decrease in the protein fluorescence with increasing drug concentrations. A decreasing trend of the Stern-Volmer constant, Ksv with increasing temperature characterized the drug-induced quenching as static quenching, thus pointed towards the formation of Tyr 9-HSA complex. The binding constant of Tyr 9-HSA interaction was found to lie within the range 3.48-1.69 × 105 M-1 at three different temperatures, i.e. 15 °C, 25 °C and 35 °C, respectively and suggested intermediate binding affinity between Tyr 9 and HSA. The drug-HSA complex seems to be stabilized by hydrophobic forces, van der Waals forces and hydrogen bonds, as suggested from the thermodynamic data as well as molecular docking results. The far-UV and the near-UV CD spectral results showed slight alteration in the secondary and tertiary structures, respectively, of the protein upon Tyr 9 binding. Interaction of Tyr 9 with HSA also produced microenvironmental perturbations around protein fluorophores, as evident from the three-dimensional fluorescence spectral results but increased protein's thermal stability. Both competitive drug binding results and molecular docking analysis suggested Sudlow's Site I of HSA as the preferred Tyr 9 binding site. Communicated by Ramaswamy H. Sarma.
  7. Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2021 Feb;39(2):691-702.
    PMID: 31913089 DOI: 10.1080/07391102.2020.1713215
    Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, K
    sv
    with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
  8. Abu Bakar AR, Manaharan T, Merican AF, Mohamad SB
    Nat Prod Res, 2018 Feb;32(4):473-476.
    PMID: 28391727 DOI: 10.1080/14786419.2017.1312393
    Ficus deltoidea leaves extract are known to have good therapeutic properties such as antioxidant, anti-inflammatory and anti-diabetic. We showed that 50% ethanol-water extract of F. deltoidea leaves and its pungent compounds vitexin and isovitexin exhibited significant (p 
  9. Kabir MZ, Ghani H, Mohamad SB, Alias Z, Tayyab S
    J Biomol Struct Dyn, 2018 Aug;36(10):2495-2507.
    PMID: 28749242 DOI: 10.1080/07391102.2017.1360207
    Multiple spectroscopic techniques, such as fluorescence, absorption, and circular dichroism along with in silico studies were used to characterize the binding of a potent inhibitor molecule, CCG1423 to the major transport protein, human serum albumin (HSA). Fluorescence and absorption spectroscopic results confirmed CCG1423-HSA complex formation. A strong binding affinity stabilized the CCG1423-HSA complex, as evident from the values of the binding constant (Ka = 1.35 × 106-5.43 × 105 M-1). The KSV values for CCG1423-HSA system were inversely correlated with temperature, suggesting the involvement of static quenching mechanism. Thermodynamic data anticipated that CCG1423-HSA complexation was mainly driven by hydrophobic and van der Waals forces as well as hydrogen bonds. In silico analysis also supported these results. Three-dimensional fluorescence and circular dichroism spectral analysis suggested microenvironmental perturbations around protein fluorophores and structural (secondary and tertiary) changes in the protein upon CCG1423 binding. CCG1423 binding to HSA also showed some protection against thermal denaturation. Site-specific marker-induced displacement results revealed CCG1423 binding to Sudlow's site I of HSA, which was also confirmed by the computational results. A few common ions were also found to interfere with the CCG1423-HSA interaction.
  10. Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S
    Biopolymers, 2020 Feb;111(2):e23337.
    PMID: 31691964 DOI: 10.1002/bip.23337
    The interaction between mefloquine (MEF), the antimalarial drug, and human serum albumin (HSA), the main carrier protein in blood circulation, was explored using fluorescence, absorption, and circular dichroism spectroscopic techniques. Quenching of HSA fluorescence with MEF was characterized as static quenching and thus confirmed the complex formation between MEF and HSA. Association constant values for MEF-HSA interaction were found to fall within the range of 3.79-5.73 × 104  M-1 at various temperatures (288, 298, and 308 K), which revealed moderate binding affinity. Hydrogen bonds and hydrophobic interactions were predicted to connect MEF and HSA together in the MEF-HSA complex, as deduced from the thermodynamic data (ΔS = +133.52 J mol-1 K-1 and ΔH = +13.09 kJ mol-1 ) of the binding reaction and molecular docking analysis. Three-dimensional fluorescence spectral analysis pointed out alterations in the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues of HSA consequent to the addition of MEF. Circular dichroic spectra of HSA in the wavelength ranges of 200-250 and 250-300 nm hinted smaller changes in the protein's secondary and tertiary structures, respectively, induced by MEF binding. Noncovalent conjugation of MEF to HSA bettered protein thermostability. Site marker competitive drug displacement results suggested HSA Sudlow's site I as the MEF binding site, which was also supported by molecular docking analysis.
  11. Ripen AM, Chiow MY, Rama Rao PR, Mohamad SB
    Front Immunol, 2021;12:778133.
    PMID: 34804071 DOI: 10.3389/fimmu.2021.778133
    Blended phenotypes exhibited by a patient may present a challenge to the establishment of diagnosis. In this study, we report a seven-year-old Murut girl with unusual features of Williams-Beuren syndrome (WBS), including recurrent infections and skin abscesses. Considering the possibility of a second genetic disorder, a mutation screening for genes associated with inborn errors of immunity (IEI) was conducted using whole exome sequencing (WES). Analysis of copy number variations (CNVs) from the exome data revealed a 1.53Mb heterozygous deletion on chromosome 7q11.23, corresponding to the known WBS. We also identified a biallelic loss of NCF1, which indicated autosomal recessive chronic granulomatous disease (CGD). Dihydrorhodamine (DHR) flow cytometric assay demonstrated abnormally low neutrophil oxidative burst activity. Coamplification of NCF1 and its pseudogenes identified a GT-deletion (ΔGT) at the start of exon 2 in NCF1 (NM_000265.7: c.75_76delGT: p.Tyr26Hisfs*26). Estimation of NCF1-to-NCF1 pseudogenes ratio using ΔGT and 20-bp gene scans affirmed nil copies of NCF1 in the patient. While the father had a normal ratio of 2:4, the mother had a ratio of 1:5, implicating the carrier of ΔGT-containing NCF1. Discovery of a 7q11.23 deletion involving one NCF1 allele and a ΔGT in the second NCF1 allele explained the coexistence of WBS and CGD in our patient. This study highlights the capability of WES to establish a molecular diagnosis for a case with blended phenotypes, enabling the provision of appropriate prophylactic treatment.
  12. Abu Bakar AR, Ripen AM, Merican AF, Mohamad SB
    Nat Prod Res, 2019 Jun;33(12):1765-1768.
    PMID: 29394875 DOI: 10.1080/14786419.2018.1434631
    Dysregulation of matrix metalloproteinases (MMPs) activity is known in many pathological conditions with which most of the conditions are related to elevate MMPs activities. Ficus deltoidea (FD) is a plant known for its therapeutic properties. In order to evaluate the therapeutic potential of FD leaf extract, we study the enzymatic inhibition properties of FD leaf extract and its major bioactive compounds (vitexin and isovitexin) on a panel of MMPs (MMP-2, MMP-8 and MMP-9) using experimental and computational approaches. FD leaf extract and its major bioactive compounds showed pronounced inhibition activity towards the MMPs tested. Computational docking analysis revealed that vitexin and isovitexin bind to the active site of the three tested MMPs. We also evaluated the cytotoxicity and cell migration inhibition activity of FD leaf extract in the endothelial EA.hy 926 cell line. Conclusively, this study provided additional information on the potential of FD leaf extract for therapeutical application.
  13. Kabir MZ, Tayyab H, Erkmen C, Mohamad SB, Uslu B
    J Biomol Struct Dyn, 2023 Aug 02.
    PMID: 37529911 DOI: 10.1080/07391102.2023.2239931
    Biomolecular association of an anticancer drug, leflunomide (LEF) with human serum albumin (HSA), the leading ligands carrier in human circulation was characterized using biophysical (i.e., fluorescence, absorption and voltammetric) methods and computational (i.e., molecular docking and molecular dynamics simulation) techniques. Evaluations of fluorescence, absorption and voltammetric findings endorsed the complex formation between LEF and HSA. An inverse relationship of Stern-Volmer constant-temperature and hyperchromic shift of the protein's absorption signal with addition of LEF confirmed the LEF quenched the HSA fluorescence through static process. Moderate nature of binding strength (binding constant = 2.76-4.77 × 104 M-1) was detected towards the LEF-HSA complexation, while the association process was naturally driven via hydrophobic interactions, van der Waals interactions and hydrogen bonds, as evident from changes in entropy (ΔS= + 19.91 J mol-1 K-1) and enthalpy (ΔH = - 20.09 kJ mol-1), and molecular docking assessments. Spectral analyses of synchronous and three-dimensional fluorescence validated microenvironmental fluctuations near Trp and Tyr residues upon LEF binding to the protein. LEF association with HSA significantly defended temperature-induced destabilization of the protein. Although LEF was found to attach to HSA at Sudlow's sites I and II, but exhibited greater preference toward its site I, as detected by the investigations of competitive site-marker displacement. Molecular dynamics simulation assessment revealed that the complex attained equilibrium throughout simulations, showing the LEF-HSA complex constancy.Communicated by Ramaswamy H. Sarma.
  14. Abubakar M, Mohamad SB, Abd Halim AA, Tayyab S
    J Biomol Struct Dyn, 2024 Feb 05.
    PMID: 38315445 DOI: 10.1080/07391102.2024.2311331
    Molecular docking, molecular dynamics (MD) simulation, atomic force microscopy (AFM) and multi-spectroscopic techniques were selected to unveil the molecular association between the hepatitis B virus (HBV) inhibitor, entecavir (ETR), and the major blood plasma transporter, human serum albumin (HSA). The entire docking and simulation analyses recognized ETR binding to subdomain IIA (Site I) of HSA through hydrogen bonds, hydrophobic and van der Waals forces while maintaining the complex's stability throughout the 100 ns. A gradual lessening in the Stern-Volmer quenching constant (Ksv) with rising temperatures registered ETR-induced quenching of HBV fluorescence as static quenching, thus advising complexation between ETR and HSA. The further advocation of this conclusion was seen from a larger value of the biomolecular quenching rate constant ((kq) > 1010 M-1s-1), changes in the spectra (UV-Vis absorption) of HSA following ETR inclusion and ETR-induced swelling of HSA in the AFM results. The ETR appeared to bind to HSA with moderate affinity (Ka=1.87-1.19×104 M-1) at 290, 300 and 310 K. Significant alterations in the protein's secondary and tertiary structures, including changes in the protein's Tyr/Trp microenvironment, were also detected by circular dichroism and three-dimensional fluorescence spectra when the protein was bound to ETR. The findings of the drug displacement study backed the docking results of Site I as ETR's preferred binding site in HSA.Communicated by Ramaswamy H. Sarma.
  15. Mirsafian H, Mat Ripen A, Singh A, Teo PH, Merican AF, Mohamad SB
    ScientificWorldJournal, 2014;2014:639682.
    PMID: 24707212 DOI: 10.1155/2014/639682
    Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC) suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure.
  16. Chear CT, Gill HK, Ramly NH, Dhaliwal JS, Bujang N, Ripen AM, et al.
    Asian Pac J Allergy Immunol, 2013 Dec;31(4):320-4.
    PMID: 24383975 DOI: 10.12932/AP0304.31.4.2013
    X-linked agammaglobulinemia (XLA) is a rare genetic disorder caused by mutations in the Bruton's tyrosine kinase (BTK) gene. These mutations cause defects in early B cell development. A patient with no circulating B cells and low serum immunoglobulin isotypes was studied as were his mother and sister. Monocyte BTK protein expression was evaluated by flow cytometry. The mutation was determined using PCR and followed by sequencing. Flow cytometry showed the patient lacked BTK protein expression in his monocytes while the mother and sister had 62% and 40% of the monocytes showing BTK protein expressions respectively. The patient had a novel base substitution in the first nucleotide of intron 9 in the BTK gene, and the mutation was IVS9+1G
  17. Feroz SR, Mohamad SB, Bujang N, Malek SN, Tayyab S
    J Agric Food Chem, 2012 Jun 13;60(23):5899-908.
    PMID: 22624666 DOI: 10.1021/jf301139h
    Interaction of flavokawain B (FB), a multitherapeutic flavonoid from Alpinia mutica with the major transport protein, human serum albumin (HSA), was investigated using different spectroscopic probes, i.e., intrinsic, synchronous, and three-dimensional (3-D) fluorescence, circular dichroism (CD), and molecular modeling studies. Values of binding parameters for FB-HSA interaction in terms of binding constant and stoichiometry of binding were determined from the fluorescence quench titration and were found to be 6.88 × 10(4) M(-1) and 1.0 mol of FB bound per mole of protein, respectively, at 25 °C. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was primarily mediated by hydrophobic interactions and hydrogen bonding, as the values of the enthalpy change (ΔH) and the entropy change (ΔS) were found to be -6.87 kJ mol(-1) and 69.50 J mol(-1) K(-1), respectively. FB binding to HSA led to both secondary and tertiary structural alterations in the protein as revealed by intrinsic, synchronous, and 3-D fluorescence results. Increased thermal stability of HSA in the presence of FB was also evident from the far-UV CD spectral results. The distance between the bound ligand and Trp-214 of HSA was determined as 3.03 nm based on the Förster resonance energy transfer mechanism. Displacement experiments using bilirubin and warfarin coupled with molecular modeling studies assigned the binding site of FB on HSA at domain IIA, i.e., Sudlow's site I.
  18. Kabir MZ, Feroz SR, Mukarram AK, Alias Z, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2016 Aug;34(8):1693-704.
    PMID: 26331959 DOI: 10.1080/07391102.2015.1089187
    Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB-HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92-6.89 × 10(3 )M(-1) at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB-HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J mol(-1) K(-1)) and negative ΔH (-6.57 kJ mol(-1)) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB-HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow's site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mg(2+), and Mn(2+) in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.
  19. Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2016 Jul;160:229-39.
    PMID: 27128364 DOI: 10.1016/j.jphotobiol.2016.04.005
    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
  20. Tayyab S, Sam SE, Kabir MZ, Ridzwan NFW, Mohamad SB
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 May 05;214:199-206.
    PMID: 30780089 DOI: 10.1016/j.saa.2019.02.028
    Binding of a potent anticancer agent, ponatinib (PTB) to human serum albumin (HSA), main ligand transporter in blood plasma was analyzed with several spectral techniques such as fluorescence, absorption and circular dichroism along with molecular docking studies. Decrease in the KSV value with increasing temperature pointed towards PTB-induced quenching as the static quenching, thus affirming complexation between PTB and HSA. An intermediate binding affinity was found to stabilize the PTB-HSA complex, as suggested by the Ka value. Thermodynamic analysis of the binding phenomenon revealed participation of hydrophobic and van der Waals interactions along with hydrogen bonds, which was also supported by molecular docking analysis. Changes in both secondary and tertiary structures as well as in the microenvironment around Trp and Tyr residues of HSA were anticipated upon PTB binding to the protein, as manifested from circular dichroism and three-dimensional fluorescence spectra, respectively. Binding of PTB to HSA led to protein's thermal stabilization. Competitive ligand displacement experiments using different site markers such as warfarin, indomethacin and ketoprofen disclosed the binding site of PTB as Sudlow's site I in HSA, which was further confirmed by molecular docking analysis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links