Displaying all 5 publications

Abstract:
Sort:
  1. Hussain S, Mohd Ali J, Jalaludin MY, Harun F
    Pediatr Diabetes, 2013 Jun;14(4):299-303.
    PMID: 23350652 DOI: 10.1111/pedi.12011
    We report a rare case of permanent neonatal diabetes (PND) due to insulin (INS) gene mutation in a 51-month-old girl who presented with hyperglycemia in the neonatal period. Mutational analysis of KCNJ11 and INS was performed and this detected a novel heterozygous c.38T>G (p.Leu13Arg) INS de novo mutation. The non-conservative change substitutes the highly conserved L(13) residue within the hydrophobic core region of the preproinsulin signal peptide. Given the frequent tendency of heterozygous INS mutations to exhibit dominant negative disease pathogenesis, it is likely that the mutant preproinsulin perturbed the non-mutant counterpart progression and processing within the β-cells, and this resulted to a permanent form of congenital diabetes.
  2. Kabir MF, Mohd Ali J, Abolmaesoomi M, Hashim OH
    BMC Complement Altern Med, 2017 May 05;17(1):252.
    PMID: 28476158 DOI: 10.1186/s12906-017-1761-9
    BACKGROUND: Melicope ptelefolia is a well-known herb in a number of Asian countries. It is often used as vegetable salad and traditional medicine to address various ailments. However, not many studies have been currently done to evaluate the medicinal benefits of M. ptelefolia (MP). The present study reports antioxidant, anti-proliferative, and apoptosis induction activities of MP leaf extracts.

    METHOD: Young MP leaves were dried, powdered and extracted sequentially using hexane (HX), ethyl acetate (EA), methanol (MeOH) and water (W). Antioxidant activity was evaluated using ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals scavenging and cellular antioxidant activity (CAA) assays. Anti-proliferative activity was evaluated through cell viability assay, using the following four human cancer cell lines: breast (HCC1937, MDA-MB-231), colorectal (HCT116) and liver (HepG2). The anti-proliferative activity was further confirmed through cell cycle and apoptosis assays, including annexin-V/7-aminoactinomycin D staining and measurements of caspase enzymes activation and inhibition.

    RESULT: Overall, MP-HX extract exhibited the highest antioxidant potential, with IC50 values of 267.73 ± 5.58 and 327.40 ± 3.80 μg/mL for ABTS and DPPH radical-scavenging assays, respectively. MP-HX demonstrated the highest CAA activity in Hs27 cells, with EC50 of 11.30 ± 0.68 μg/mL, while MP-EA showed EC50 value of 37.32 ± 0.68 μg/mL. MP-HX and MP-EA showed promising anti-proliferative activity towards the four cancer cell lines, with IC50 values that were mostly below 100 μg/mL. MP-HX showed the most notable anti-proliferative activity against MDA-MB-231 (IC50 = 57.81 ± 3.49 μg/mL) and HCT116 (IC50 = 58.04 ± 0.96 μg/mL) while MP-EA showed strongest anti-proliferative activity in HCT116 (IC50 = 64.69 ± 0.72 μg/mL). The anticancer potential of MP-HX and MP-EA were also demonstrated by their ability to induce caspase-dependent apoptotic cell death in all of the cancer cell lines tested. Cell cycle analysis suggested that both the MP-HX and MP-EA extracts were able to disrupt the cell cycle in most of the cancer cell lines.

    CONCLUSIONS: MP-HX and MP-EA extracts demonstrated notable antioxidant, anti-proliferative, apoptosis induction and cancer cell cycle inhibition activities. These findings reflect the promising potentials of MP to be a source of novel phytochemical(s) with health promoting benefits that are also valuable for nutraceutical industry and cancer therapy.

  3. Kabir MF, Mohd Ali J, Haji Hashim O
    PeerJ, 2018;6:e5203.
    PMID: 30042885 DOI: 10.7717/peerj.5203
    Background: We have previously reported anticancer activities of Melicope ptelefolia (MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling.

    Methods: HCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR).

    Results: MP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines.

    Discussion: The present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.

  4. Abdul Aziz FAB, Abd Rahman N, Mohd Ali J
    Comput Intell Neurosci, 2019;2019:6252983.
    PMID: 31239836 DOI: 10.1155/2019/6252983
    Due to the rapid development of economy and society around the world, the most urban city is experiencing tropospheric ozone or commonly known as ground-level air pollutants. The concentration of air pollutants must be identified as an early precaution step by the local environmental or health agencies. This work aims to apply the artificial neural network (ANN) in estimating the ozone concentration forecast in Bangi. It consists of input variables such as temperature, relative humidity, concentration of nitrogen dioxide, time, UVA and UVB rays obtained from routine monitoring, and data recorded. Ten hidden layer is utilized to obtain the optimized ozone concentration, which is the output layer of the ANN framework. The finding showed that the meteorology condition and emission patterns play an important part in influencing the ozone concentration. However, a single network is sufficient enough to estimate the concentration despite any circumstances. Thus, it can be concluded that ANN is able to give reliable and satisfactory estimations of ozone concentration for the following day.
  5. Abd Rahman F, Mohd Ali J, Abdullah M, Abu Kasim NH, Musa S
    J. Periodontol., 2016 07;87(7):837-47.
    PMID: 26846966 DOI: 10.1902/jop.2016.150610
    BACKGROUND: This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs).

    METHODS: Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay.

    RESULTS: ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35).

    CONCLUSIONS: ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links