Displaying all 2 publications

Abstract:
Sort:
  1. Nor Muhammad NA, Ramlee IA, Mohd Nor D, Satyavenathan MV, Rahmat NL, Awang A, et al.
    Data Brief, 2021 Feb;34:106638.
    PMID: 33365368 DOI: 10.1016/j.dib.2020.106638
    Cocoa bean (Theobroma cacao L.) is part of the global cocoa and chocolate industry valued at 44 billion US dollars in 2019. Cocoa pod borer (CPB), Conopomorpha cramerella is a major pest of cocoa in Malaysia and Indonesia that is responsible for the decline for cocoa production. They have been detected since 1980s. Unfortunately, current control strategies are inefficient for CPB management. Although biotechnological alternatives, including RNA interference (RNAi), have been proposed in recent years to control insect pests, characterizing the genetics of the target pest is essential for successful application of these emerging technologies. We generated a comprehensive RNA-seq dataset (135,915,430 clean reads) for larva and adult stages of CPB by using the Illumina HiseqTM 4000 system to increase the understanding of CPB in relation to molecular features. The CPB transcriptome was assembled de novo and annotated. The final assembled produced 249,280 unigenes, of which 75,929 unigenes annotated against NCBI NR database and were distributed among 156 KEGG pathways. The raw data were uploaded to SRA database and the BioProject ID is PRJNA553611. The transcriptomic dataset we present are the first reports of transcriptome information in CPB that is valuable for further exploration and understanding of CPB molecular pathways.
  2. Mohd-Nor D, Ramli N, Sharuddin SS, Hassan MA, Mustapha NA, Ariffin H, et al.
    Microbes Environ, 2019 Jun 27;34(2):121-128.
    PMID: 30905894 DOI: 10.1264/jsme2.ME18104
    Despite efforts to address the composition of the microbial community during the anaerobic treatment of palm oil mill effluent (POME), its composition in relation to biodegradation in the full-scale treatment system has not yet been extensively examined. Therefore, a thorough analysis of bacterial and archaeal communities was performed in the present study using MiSeq sequencing at the different stages of the POME treatment, which comprised anaerobic as well as facultative anaerobic and aerobic processes, including the mixed raw effluent (MRE), mixing pond, holding tank, and final discharge phases. Based on the results obtained, the following biodegradation processes were suggested to occur at the different treatment stages: (1) Lactobacillaceae (35.9%) dominated the first stage, which contributed to high lactic acid production; (2) the higher population of Clostridiaceae in the mixing pond (47.7%) and Prevotellaceae in the holding tank (49.7%) promoted acetic acid production; (3) the aceticlastic methanogen Methanosaetaceae (0.6-0.8%) played a role in acetic acid degradation in the open digester and closed reactor for methane generation; (4) Syntrophomonas (21.5-29.2%) appeared to be involved in the degradation of fatty acids and acetic acid by syntrophic cooperation with the hydrogenotrophic methanogen, Methanobacteriaceae (0.6-1.3%); and (5) the phenols and alcohols detected in the early phases, but not in the final discharge phase, indicated the successful degradation of lignocellulosic materials. The present results contribute to a better understanding of the biodegradation mechanisms involved in the different stages of the full-scale treatment of POME.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links