Displaying all 19 publications

Abstract:
Sort:
  1. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A
    Appl Biochem Biotechnol, 2015 Feb;175(4):1817-42.
    PMID: 25427594 DOI: 10.1007/s12010-014-1417-x
    Nanobiocatalysis is a new frontier of emerging nanosized material support in enzyme immobilization application. This paper is about a comprehensive review on cellulose nanofibers (CNF), including their structure, surface modification, chemical coupling for enzyme immobilization, and potential applications. The CNF surface consists of mainly -OH functional group that can be directly interacted weakly with enzyme, and its binding can be improved by surface modification and interaction of chemical coupling that forms a strong and stable covalent immobilization of enzyme. The knowledge of covalent interaction for enzyme immobilization is important to provide more efficient interaction between CNF support and enzyme molecule. Enzyme immobilization onto CNF is having potential for improving enzymatic performance and production yield, as well as contributing toward green technology and sustainable sources.
  2. Talib AT, Mokhtar MN, Baharuddin AS, Sulaiman A
    Bioresour Technol, 2014 Oct;169:428-38.
    PMID: 25079208 DOI: 10.1016/j.biortech.2014.07.033
    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.
  3. Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R
    Biomed Res Int, 2018;2018:6563196.
    PMID: 30643814 DOI: 10.1155/2018/6563196
    The interest in utilizing algae for wastewater treatment has been increased due to many advantages. Algae-wastewater treatment system offers a cost-efficient and environmentally friendly alternative to conventional treatment processes such as electrocoagulation and flocculation. In this biosystem, algae can assimilate nutrients in the wastewater for their growth and simultaneously capture the carbon dioxide from the atmosphere during photosynthesis resulting in a decrease in the greenhouse gaseousness. Furthermore, the algal biomass obtained from the treatment process could be further converted to produce high value-added products. However, the recovery of free suspended algae from the treated effluent is one of the most important challenges during the treatment process as the current methods such as centrifugation and filtration are faced with the high cost. Immobilization of algae is a suitable approach to overcome the harvesting issue. However, there are some drawbacks with the common immobilization carriers such as alginate and polyacrylamide related to low stability and toxicity, respectively. Hence, it is necessary to apply a new carrier without the mentioned problems. One of the carriers that can be a suitable candidate for the immobilization is zeolite. To date, various types of zeolite have been used for the immobilization of cells of bacteria and yeast. If there is any possibility to apply them for the immobilization of algae, it needs to be considered in further studies. This article reviews cell immobilization technique, biomass immobilization onto zeolites, and algal immobilization with their applications. Furthermore, the potential application of zeolite as an ideal carrier for algal immobilization has been discussed.
  4. Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R
    Int J Biol Macromol, 2019 Jul 01;132:592-599.
    PMID: 30922914 DOI: 10.1016/j.ijbiomac.2019.03.191
    This research aimed to improve the stability of Chlorella-Alginate Beads (CABs) by zeolite molecular sieves 13X. Dissolution time of synthesized Zeolite-Algal-Alginate Beads (ZABs) in a chelating agent revealed a significant improvement on the beads stability (78.5 ± 0.5 min) compared to the control beads (51.5 ± 0.5 min) under the optimum conditions of zeolite/alginate (1.5:1), pH 5 and 2% of beads. Monitoring cell growth during 5 days of incubation showed good biocompatibility of zeolite 13X. Scanning electron microscopy (SEM) indicated rough surface and spherical shapes of ZABs. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) of ZABs confirmed the presence of zeolite 13X within the matrix. The zeta potential value of ZABs indicated that the beads were relatively stable. The findings of this research showed that zeolite molecular sieves 13X have the potential to improve the stability of algal-alginate beads compared to common beads.
  5. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
  6. Zahari MA, Zakaria MR, Ariffin H, Mokhtar MN, Salihon J, Shirai Y, et al.
    Bioresour Technol, 2012 Apr;110:566-71.
    PMID: 22342083 DOI: 10.1016/j.biortech.2012.01.119
    In this paper, we report that pressed juice from oil palm frond (OPF) contained renewable sugars such as glucose, sucrose and fructose. By using a simple sugarcane press, 50% (wt/wt) of OPF juice was obtained from fresh OPF. The glucose content in the juice was 53.95±2.86g/l, which accounts for 70% of the total free sugars. We have examined the effect of various OPF juice concentrations on the production of poly(3-hydroxybutyrate), P(3HB) by Cupriavidus necator CCUG 52238(T). The cell dry mass in shake flask experiment reached 8.42g/l, with 32wt.% of P(3HB) at 30% (v/v) of OPF juice, comparable with using technical grade sugars. The biopolymer had a molecular mass, M(w) of 812kDa, with a low polydispersity index of 1.61. This result indicates that OPF juice can be used as an alternative renewable carbon source for P(3HB) production and has potential as a renewable carbon source.
  7. Saallah S, Naim MN, Lenggoro IW, Mokhtar MN, Abu Bakar NF, Gen M
    Biotechnol Rep (Amst), 2016 Jun;10:44-48.
    PMID: 28352523 DOI: 10.1016/j.btre.2016.03.003
    Immobilisation of cyclodextrin glucanotransferase (CGTase) on nanofibres was demonstrated. CGTase solution (1% v/v) and PVA (8 wt%) solution were mixed followed by electrospinning (-9 kV, 3 h). CGTase/PVA nanofibres with an average diameter of 176 ± 46 nm were successfully produced. The nanofibres that consist of immobilised CGTase were crosslinked with glutaraldehyde vapour. A CGTase/PVA film made up from the same mixture and treated the same way was used as a control experiment. The immobilised CGTase on nanofibres showed superior performance with nearly a 2.5 fold higher enzyme loading and 31% higher enzyme activity in comparison with the film.
  8. Saallah S, Naim MN, Mokhtar MN, Abu Bakar NF, Gen M, Lenggoro IW
    Enzyme Microb Technol, 2014 Oct;64-65:52-9.
    PMID: 25152417 DOI: 10.1016/j.enzmictec.2014.06.002
    In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying needle, ranging from 10 to 25 cm. The Coulomb fission that occurs during electrospraying process successfully transformed the enzyme to the solid state without any functional group deterioration. The functional group verification was conducted by FTIR analysis. Comparison between the deposit and the as-received enzyme in dry state indicates almost identical spectra. By increasing the distance of the collector from the needle tip, the average particle size of the solidified enzyme was reduced from 200±117 nm to 75±34 nm. The average particle sizes produced from the droplet fission were in agreement with the scaling law models. Enzyme activity analysis showed that the enzyme retained its initial activity after the electrospraying process. The enzyme particles collected at the longest distance (25 cm) demonstrated the highest enzyme activity, which indicates that the activity was controlled by the enzyme particle size.
  9. Hafid HS, Nor 'Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS
    Waste Manag, 2017 Sep;67:95-105.
    PMID: 28527863 DOI: 10.1016/j.wasman.2017.05.017
    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H2SO4) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production.
  10. Talib AT, P Mohammed MA, Baharuddin AS, Mokhtar MN, Wakisaka M
    J Mech Behav Biomed Mater, 2019 09;97:58-64.
    PMID: 31100486 DOI: 10.1016/j.jmbbm.2019.05.010
    This paper demonstrates the potential use of toy-bricks as the building block of a mechanical tensile testing instrument for the mechanical characterisation of natural fibres. A table-top tensile testing instrument was developed using LEGO parts (Mindstorms EV3 and Technics) and a 2 kg capacity load cell, whereas deformation modes were programmed in an open source programming language. Experimental work was conducted on oil palm fibres under different tensile modes (i.e. constant deformation, triple-twisted-tension and deformation-relaxation modes), which showed anisotropic-viscoelastic behaviour, and microstructural damages due to deformation.
  11. Mokhtar MN, Azaharuddin I, Abdullah FH, Izaham A, Abdul Rahman R
    Front Med (Lausanne), 2022;9:1058121.
    PMID: 36569164 DOI: 10.3389/fmed.2022.1058121
    Pseudomonas putida is a rare pathogen leading to nosocomial and central nervous system infections. Despite having a low virulence and being a rare organism to cause bacteremia, it can evolve into a multidrug-resistant organism and lead to mortality and morbidity in the intensive care setting. A 64-year-old male gardener was presented with extensive acute subarachnoid hemorrhage with intraventricular extension causing hydrocephalus requiring embolization and coiling following a cerebral angiogram, which showed bilateral posterior circulation aneurysm and left anterior circulation aneurysm. External ventricular drain (EVD) was inserted given the worsening hydrocephalus. During his stay in the intensive care unit (ICU), he was becoming more septic and a full septic workup including a cerebral spinal fluid culture taken from the indwelling catheter of the EVD and was found to be positive for a ceftazidime-sensitive strain of P. putida. Following the treatment with intravenous ceftazidime for 1 week and a revision of the EVD on day 32 of admission, he continued to recover well and showed an improvement in his Glasgow Coma Scale (GCS) and septic parameters. Eventually, he was able to wean off mechanical ventilation. He was discharged from ICU care to the neurosurgical ward with supplemental oxygen on day 42 of admission. It is necessary to be aware of the possibility of nosocomial P. putida infection, especially in patients with indwelling catheters, and to consider the early initiation of appropriate antibiotic regimens once detected as well as strict precautions in hygiene during the management of these patients to avoid further development of multi-drug resistant (MDR) strains.
  12. Mokhtar MN, Abdul Rahman R, Md Nor N, Izaham A, Sayed Masri SNN
    Cureus, 2023 Nov;15(11):e48369.
    PMID: 38060730 DOI: 10.7759/cureus.48369
    At our institution, we occasionally see pregnant patients in the later stages of pregnancy who present with severe pulmonary arterial hypertension caused by congenital heart disease. The physiological changes in pregnancy may worsen the cardiovascular status leading to heart failure which is associated with a high incidence of morbidity and mortality. A scheduled caesarean section in such patients ensures delivery in a controlled environment, avoiding prolonged labour, which is detrimental. Perioperative complications that may worsen pulmonary arterial hypertension should be prevented. The perioperative management, in particular, the anaesthesia technique used and the clinical outcome of this population, is discussed through five interesting cases. Despite a multidisciplinary team and intensive care management, two patients with existing cor pulmonale, one of whom received general and the other central neural blockade anaesthesia, succumbed to their illness immediately after lower segment caesarean section. The management of severe pulmonary arterial hypertension in pregnant patients remains a multidisciplinary challenge among participating physicians. Thorough perioperative preparation encompassing monitoring, medical therapy, timing and mode of delivery, and risk consultation is vital in avoiding circumstances that could exacerbate pulmonary arterial hypertension, with physicians readily equipped to promptly detect and manage any untoward event.
  13. Asghar MT, Yusof YA, Mokhtar MN, Ya'acob ME, Mohd Ghazali H, Chang LS, et al.
    Food Sci Nutr, 2020 Apr;8(4):1777-1787.
    PMID: 32328243 DOI: 10.1002/fsn3.1191
    This study was carried out to compare the antioxidant and nutritional properties of coconut (Cocos nucifera L.) sap with other natural sources of sugar such as sugar palm (Borassus flabellifer) and sugarcane (Saccharum officinarum L.). Coconut sap and juice from sugar palm and sugarcane were analyzed for proximate composition, pH and total soluble solid (TSS), color, sugar profile, vitamin profile, antioxidant properties (total phenolic contents, DPPH, FRAP, and ABTS), and mineral content. The results indicated that coconut sap possesses high DPPH (23.42%), FRAP (2.09 mM/ml), and ABTS (21.85%) compared with the juices. Coconut sap also had high vitamin C (116.19 µg/ml) and ash (0.27%) contents, especially in potassium (960.87 mg/L) and sodium (183.21 mg/L) which also indicating high content of minerals. These properties showed that coconut sap could be served as a potential healthier sugar source compared with sugar palm and sugarcane juices.
  14. Mohd Zahari MA, Ariffin H, Mokhtar MN, Salihon J, Shirai Y, Hassan MA
    J Biomed Biotechnol, 2012;2012:125865.
    PMID: 23133311 DOI: 10.1155/2012/125865
    Factors influencing poly(3-hydroxybutyrate) P(3HB) production by Cupriavidus necator CCUG52238(T) utilizing oil palm frond (OPF) juice were clarified in this study. Effects of initial medium pH, agitation speed, and ammonium sulfate (NH(4))(2)SO(4) concentration on the production of P(3HB) were investigated in shake flasks experiments using OPF juice as the sole carbon source. The highest P(3HB) content was recorded at pH 7.0, agitation speed of 220 rpm, and (NH(4))(2)SO(4) concentration at 0.5 g/L. By culturing the wild-type strain of C. necator under the aforementioned conditions, the cell dry weight (CDW) and P(3HB) content obtained were 9.31 ± 0.13 g/L and 45 ± 1.5 wt.%, respectively. This accounted for 40% increment of P(3HB) content compared to the nonoptimized condition. In the meanwhile, the effect of dissolved oxygen tension (DOT) on P(3HB) production was investigated in a 2-L bioreactor. Highest CDW (11.37 g/L) and P(3HB) content (44 wt.%) were achieved when DOT level was set at 30%. P(3HB) produced from OPF juice had a tensile strength of 40 MPa and elongation at break of 8% demonstrated that P(3HB) produced from renewable and cheap carbon source is comparable to those produced from commercial substrate.
  15. Yusree FIFM, Peter AP, Mohd Nor MZ, Show PL, Mokhtar MN
    Foods, 2021 Nov 09;10(11).
    PMID: 34829028 DOI: 10.3390/foods10112748
    In recent years, downstream bioprocessing industries are venturing into less tedious, simple, and high-efficiency separation by implementing advanced purification and extraction methods. This review discusses the separation of proteins, with the main focus on amylase as an enzyme from agricultural waste using conventional and advanced techniques of extraction and purification via a liquid biphasic system (LBS). In comparison to other methods, such as membrane extraction, precipitation, ultrasonication, and chromatography, the LBS stands out as an efficient, cost-effective, and adaptable developing method for protein recovery. The two-phase separation method can be water-soluble polymers, or polymer and salt, or alcohol and salt, which is a simpler and lower-cost method that can be used at a larger purification scale. The comparison of different approaches in LBS for amylase purification from agricultural waste is also included. Current technology has evolved from a simple LBS into microwave-assisted LBS, liquid biphasic flotation (LBF), thermoseparation (TMP), three-phase partitioning (TPP), ultrasound-assisted LBS, and electrically assisted LBS. pH, time, temperature, and concentration are some of the significant research parameters considered in the review of advanced techniques.
  16. Ng HS, Ooi CW, Mokhtar MN, Show PL, Ariff A, Tan JS, et al.
    Bioresour Technol, 2013 Aug;142:723-6.
    PMID: 23806510 DOI: 10.1016/j.biortech.2013.05.087
    An extractive bioconversion with Bacillus cereus cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) in aqueous two-phase system (ATPS) was investigated for the synthesis and recovery of cyclodextrins (CDs). Optimum condition for the extractive bioconversion of CDs was achieved in ATPS consisted of 7.7% (w/w) polyethylene glycol (PEG) 20,000 and 10.3% (w/w) dextran T500 with volume ratio (VR) of 4.0. Enzymatic conversion of starch occurred mainly in dextran-rich bottom phase whereas the product, CDs was transferred to top phase and a higher partition coefficient of CDs was achieved. Repetitive batch of CDs synthesis was employed by replenishment of the top phase components and addition of starch every 8h. An average total CDs concentration of 13.7 mg/mL, (4.77 mg/mLα-CD, 5.02 mg/mLβ-CD and 3.91 mg/mLγ-CD) was recovered in the top phase of PEG 20,000/dextran T500 ATPS. This study showed the effectiveness of ATPS application in extractive bioconversion of CDs synthesis with B. cereus CGTase.
  17. Lawal AA, Hassan MA, Zakaria MR, Yusoff MZM, Norrrahim MNF, Mokhtar MN, et al.
    Bioresour Technol, 2021 Jul;332:125070.
    PMID: 33878542 DOI: 10.1016/j.biortech.2021.125070
    The influence of biomass cellulosic content on biochar nanopore structure and adsorption capacity in aqueous phase was scarcely reported. Commercial cellulose (100% cellulose), oil palm frond (39.5% cellulose), and palm kernel shell (20.5% cellulose) were pyrolyzed AT 630 °C, characterized and tested for the adsorption of iodine and organic contaminants. The external surface area and average pore size increased with cellulosic content, where commercial cellulose formed biochar with external surface area of 95.4 m2/g and average pore size of 4.1 nm. The biochar from commercial cellulose had the largest adsorption capacities: 371.40 mg/g for iodine, 86.7 mg/L for tannic acid, 17.89 mg/g for COD and 60.35 mg/g for colour, while biochar from palm kernel shell had the least adsorption capacities. The cellulosic content reflected the differences in biochar nanopore structure and adsorption capacities, signifying the suitability of highly cellulosic biomass for producing biochar to effectively treat wastewater.
  18. Asghar MT, Yusof YA, Mokhtar MN, Yaacob ME, Ghazali HM, Varith J, et al.
    J Sci Food Agric, 2020 Aug;100(10):4012-4019.
    PMID: 32337729 DOI: 10.1002/jsfa.10446
    BACKGROUND: Coconut sugar has a caramel color with a taste like brown sugar. It is commonly used as natural sweetener. However, coconut sugar has been produced from coconut sap using a traditional method that involves heating the sap at high temperature (>100 °C) in an open pan for a long period (3-5 h). This conventional method results in an over-cooked sugar, which leads to quality deterioration in terms of both its physical and chemical properties. The current study aimed to investigate the processing of coconut sap into sugar syrup using alternative processing techniques such as rotary vacuum evaporation (RE) and microwave evaporation (ME), comparing them with open-heat evaporation (OHE) technique.

    RESULTS: Coconut sugar syrup produced by rotary evaporation at 60 °C and 250 mbar vacuum (RE-60) required the shortest production time (12.2 min) and the lowest processing temperature (54.8 °C) when compared with ME (13 min and 103.2 °C) and OHE (46.8 min and 101.6 °C). It also had a light brownish color with a higher L* value (35.17) than the ME (29.84) and OHE (23.84) methods. It was found to contain higher amounts of monosaccharides (fructose and glucose) and lower amounts of disaccharides (sucrose). Furthermore, the amount of energy required for RE-60 (0.35 kWh) was much less than for OHE (0.83 kWh).

    CONCLUSION: This study provided an alternative processing method for the sugar processing industry to produce coconut sugar using the rotary evaporation method at 60 °C under 250 mbar vacuum with better physicochemical qualities, shorter processing time, and minimum input energy. © 2020 Society of Chemical Industry.

  19. Lawal AA, Hassan MA, Ahmad Farid MA, Tengku Yasim-Anuar TA, Samsudin MH, Mohd Yusoff MZ, et al.
    Environ Pollut, 2021 Jan 15;269:116197.
    PMID: 33316496 DOI: 10.1016/j.envpol.2020.116197
    In order to meet the growing demand for adsorbents to treat wastewater effectively, there has been increased interest in using sustainable biomass feedstocks. In this present study, the dermal tissue of oil palm frond was pyrolyzed with superheated steam at 500 °C to produce nanoporous biochar as bioadsorbent. The effect of operating conditions was investigated to understand the adsorption mechanism and to enhance the adsorption of phenol and tannic acid. The biochar had a microporous structure with a Brunauer-Emmett-Teller surface area of 422 m2/g containing low polar groups. The adsorption capacity of 62.89 mg/g for phenol and 67.41 mg/g for tannic acid were obtained using 3 g/L biochar dosage after 8 h of treatment at solution pH of 6.5 and temperature of 45 °C. The Freundlich model had the best fit to the isotherm data of phenol (R2 of 0.9863), while the Langmuir model best elucidated the isotherm data of tannic acid (R2 of 0.9632). These indicated that the biochar-phenol interface was associated with a heterogeneous multilayer sorption mechanism, while the biochar-tannic acid interface had a nonspecific monolayer sorption mechanism. The residual concentration of 26.3 mg/L phenol and 23.1 mg/L tannic acid was achieved when treated from 260 mg/L three times consecutively with 1 g/L biochar dosage, compared to a reduction to 72.3 mg/L phenol and 69.9 mg/L tannic acid using 3 g/L biochar dosage in a single treatment. The biochar exhibited effective adsorption of phenol and tannic acid, making it possible to treat effluents that contain varieties of phenolic compounds.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links