Displaying all 16 publications

Abstract:
Sort:
  1. Zainudin MHM, Mustapha NA, Hassan MA, Bahrin EK, Tokura M, Yasueda H, et al.
    Sci Rep, 2019 09 19;9(1):13526.
    PMID: 31537863 DOI: 10.1038/s41598-019-50126-y
    A thermophilic Thermobifida fusca strain UPMC 901, harboring highly thermostable cellulolytic activity, was successfully isolated from oil palm empty fruit bunch compost. Its endoglucanase had the highest activity at 24 hours of incubation in carboxymethyl-cellulose (CMC) and filter paper. A maximum endoglucanase activity of 0.9 U/mL was achieved at pH 5 and 60 °C using CMC as a carbon source. The endoglucanase properties were further characterized using crude enzyme preparations from the culture supernatant. Thermal stability indicated that the endoglucanase activity was highly stable at 70 °C for 24 hours. Furthermore, the activity was found to be completely maintained without any loss at 50 °C and 60 °C for 144 hours, making it the most stable than other endoglucanases reported in the literature. The high stability of the endoglucanase at an elevated temperature for a prolonged period of time makes it a suitable candidate for the biorefinery application.
  2. Mustapha NA, Hu A, Yu CP, Sharuddin SS, Ramli N, Shirai Y, et al.
    Appl Microbiol Biotechnol, 2018 Jun;102(12):5323-5334.
    PMID: 29696331 DOI: 10.1007/s00253-018-9003-8
    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.
  3. Mohamad-Zainal NSL, Ramli N, Zolkefli N, Mustapha NA, Hassan MA, Maeda T
    J Biosci Bioeng, 2021 Aug;132(2):174-182.
    PMID: 34074597 DOI: 10.1016/j.jbiosc.2021.04.014
    Alcaligenaceae and Chromatiaceae were previously reported as the specific pollution bioindicators in the receiving river water contaminated by palm oil mill effluent (POME) final discharge. Considering the inevitable sensitivity of bacteria under environmental stresses, it is crucial to assess the survivability of both bacteria in the fluctuated environmental factors, proving their credibility as POME pollution bioindicators in the environment. In this study, the survivability of Alcaligenaceae and Chromatiaceae from facultative pond, algae (aerobic) pond and final discharge were evaluated under varying sets of temperature (25-40°C), pH (pH 7-9) and low/high total suspended solid (TSS) contents of POME collected during low/high crop seasons of oil palm, respectively. Following treatment, the viability status and compositions of the bacterial community were assessed using flow cytometry-based assay and high-throughput Illumina MiSeq, respectively, in correlation with the changes of physicochemical properties. The changes in temperature, pH and TSS indeed changed the physicochemical properties of POME. The functionality of bacterial cells was also shifted where the viable cells and high nucleic acid contents reduced at elevated levels of temperature and pH but increased at high TSS content. Interestingly, the Alcaligenaceae and Chromatiaceae continuously detected in the samples which accounted for more than 0.5% of relative abundance, with a positive correlation with biological oxygen demand (BOD5) concentration. Therefore, either Alcaligenaceae or Chromatiaceae or both could be regarded as the reliable and specific bacterial indicators to indicate the pollution in river water due to POME final discharge despite the fluctuations in temperature, pH and TSS.
  4. Zainudin MHM, Mustapha NA, Hassan MA, Bahrin EK, Tokura M, Yasueda H, et al.
    Sci Rep, 2020 Jan 27;10(1):1513.
    PMID: 31988396 DOI: 10.1038/s41598-020-58488-4
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  5. Zainudin MH, Mustapha NA, Maeda T, Ramli N, Sakai K, Hassan M
    Waste Manag, 2020 Apr 01;106:240-249.
    PMID: 32240940 DOI: 10.1016/j.wasman.2020.03.029
    Biochar has proven to be a feasible additive for mitigating nitrogen loss during the composting process. This study aims to evaluate the influence of biochar addition on bacterial community and physicochemical properties changes, including ammonium (NH4+), nitrite (NO2-) and nitrate (NO3-) contents during the composting of poultry manure. The composting was carried out by adding 20% (w/w) of biochar into the mixture of poultry manure and rice straw with a ratio of 2:1, and the same treatment without biochar was prepared as a control. The finished product of control compost recorded the high contents of NO2- and NO3- (366 mg/kg and 600 mg/kg) with reduced the total NH4+ content to 10 mg/kg. Meanwhile, biochar compost recorded a higher amount of total NH4+ content (110 mg/kg) with low NO2- and NO3- (161 mg/kg and 137 mg/kg) content in the final composting material. The principal component analysis showed that the dynamics of dominant genera related to Halomonas, Pusillimonas, and Pseudofulvimonas, all of which were known as nitrifying and denitrifying bacteria, was significantly correlated with the dynamic of NO2- and NO3- content throughout the composting process. The genera related to Pusillimonas, and Pseudofulvimonas appeared as the dominant communities as the NO2- and NO3- increased. In contrast, as the NO2- and NO3- concentration decreased, the Halomonas genus were notably enriched in biochar compost. This study revealed the bacterial community shifts corresponded with the change of physicochemical properties, which provides essential information for a better understanding of monitoring and improving the composting process.
  6. Wazir H, Chay SY, Zarei M, Hussin FS, Mustapha NA, Wan Ibadullah WZ, et al.
    Antioxidants (Basel), 2019 Oct 16;8(10).
    PMID: 31623062 DOI: 10.3390/antiox8100486
    Studies on the oxidative changes in meat-based, low-moisture, ready to eat foods are complicated due to complex food system and slow lipid-protein oxidative deterioration. The current study evaluates the oxidative changes over six months of storage on shredded beef and chicken products (locally known as serunding) for physicochemical analysis, lipid oxidation (conjugated dienes and malondialdehydes) and protein co-oxidation (soluble protein content, amino acid composition, protein carbonyl, tryptophan loss and Schiff base fluorescence) at 25 °C, 40 °C and 60 °C. The lipid stability of chicken serunding was significantly lower than beef serunding, illustrated by higher conjugated dienes content and higher rate of malondialdehyde formation during storage. In terms of protein co-oxidation, chicken serunding with higher polyunsaturated fatty acids (PUFA) experienced more severe oxidation, as seen from lower protein solubility, higher protein carbonyl and Schiff base formation compared to beef serunding. To conclude, chicken serunding demonstrates lower lipid and protein stability and exhibits higher rate of lipid oxidation and protein co-oxidation than beef serunding. These findings provide insights on the progression of lipid oxidation and protein co-oxidation in cooked, shredded meat products and could be extrapolated to minimize possible adverse effects arising from lipid oxidation and protein co-oxidation, on the quality of low-moisture, high-lipid, high-protein foods.
  7. Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R
    Foods, 2021 Apr 02;10(4).
    PMID: 33918108 DOI: 10.3390/foods10040754
    Dietary fiber (DF) has wide applications, especially in the food and pharmaceutical industries due to its health-promoting effects and potential techno-functional properties in developing functional food products. There is a growing interest in studies related to DF; nevertheless, there is less focus on the fractionation and characterization of DF. The characteristics of DF fractions explain their functionality in food products and provide clues to their physiological effects in food and pharmaceutical industrial applications. The review focuses on a brief introduction to DF and methods for its fractionation. It discusses the characterization of DF in terms of structural, physicochemical and rheological properties. The potential sources of DF from selected defatted oilseeds for future studies are highlighted.
  8. Abd Rahim FN, Wan Ibadullah WZ, Saari N, Brishti FH, Mustapha NA, Ahmad N, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 3):124908.
    PMID: 37217045 DOI: 10.1016/j.ijbiomac.2023.124908
    Rice bran protein concentrates (RBPC) were extracted using mild alkaline solvents (pH: 8, 9, 10). The physicochemical, thermal, functional, and structural aspects of freeze-drying (FD) and spray-drying (SD) were compared. FD and SD of RBPC had porous and grooved surfaces, with FD having non-collapsed plates and SD being spherical. Alkaline extraction increases FD's protein concentration and browning, whereas SD inhibits browning. According to amino acid profiling, RBPC-FD9's extraction optimizes and preserves amino acids. A tremendous particle size difference was prominent in FD, thermally stable at a minimal maximum of 92 °C. Increased pH extraction gives FD greater exposal surface hydrophobicity and positively relates to denaturation enthalpy. Mild pH extraction and drying significantly impacted solubility, improved emulsion properties, and foaming properties of RBPC as observed in acidic, neutral, and alkaline environments. RBPC-FD9 and RBPC-SD10 extracts exhibit outstanding foaming and emulsion activity in all pH conditions, respectively. Appropriate drying selection, RBPC-FD or SD potentially employed as foaming/emulsifier agent or meat analog.
  9. Nevara GA, Giwa Ibrahim S, Syed Muhammad SK, Zawawi N, Mustapha NA, Karim R
    Crit Rev Food Sci Nutr, 2023;63(23):6330-6343.
    PMID: 35089825 DOI: 10.1080/10408398.2022.2031092
    The excellent health benefits of oil extracted from seeds have increased its application in foods, pharmaceutical and cosmetic industries. This trend leads to a growing research area on their by-products, oilseed meals, to minimize environmental and economic issues. Examples of these by-products are soybean, peanut, kenaf seed, hemp, sesame, and chia seed meals. It is well known that soybean meals have wide applications in food and non-food industries, while other seed meals are not well established. Most oilseed meals are rich in health beneficial compounds and are potential sources of plant protein, dietary fiber, and antioxidants. Many studies have reported on the valorization of these by-products into value-added food products such as bakery and meat products to increase their nutritional and functional properties. These efforts contribute to the sustainability, development of novel functional food and support the zero-waste concept for the environment. This review aims to provide information on the composition of selected oilseed meals from soybean, peanut, hemp, kenaf, sesame and chia seeds, their potential applications in the bakery, meat, beverage, pasta, and other food products, and to highlight the issues and challenges associated with the utilization of oilseed meals into various food products.
  10. Wazir H, Chay SY, Ibadullah WZW, Zarei M, Mustapha NA, Saari N
    RSC Adv, 2021 Nov 29;11(61):38565-38577.
    PMID: 35493245 DOI: 10.1039/d1ra06872e
    Ambient-storage-friendly, ready-to-eat (RTE) meat products are convenient in emergencies, such as earthquakes, flash floods and the current global Covid-19 lockdown. However, given the processing and long storage time of such food products, the lipid and protein components may be more susceptible to oxidation. Chicken serunding is a low-moisture, high-lipid, high-protein, RTE product that is prone to lipid oxidation and protein co-oxidation, causing product quality deterioration. The present study assessed the effects of storage temperature (25, 40, 60 °C), antioxidant (butylated hydroxyanisole, BHA), and multilayer packaging materials [metallised polyethene terephthalate (MPET) and aluminium] on the lipid oxidation and protein co-oxidation of chicken serunding during six months of storage. All lipid and protein markers elevated with increasing temperature (25 < 40 < 60 °C), indicating that storage of low-moisture meat at high temperature is not feasible. BHA was effective against lipid oxidation, as indicated by the significantly lower (p <0.05) extracted lipid content and delayed formation of malondialdehyde, a secondary lipid oxidation product. However, BHA is not effective against protein co-oxidation, as shown by the insignificant (p >0.05) effect on preventing tryptophan loss, protein carbonyl formation and Schiff base accumulation. MPET packaging with a superior light and oxygen barrier provided significant protection (p <0.05) compared to aluminium. In conclusion, low temperature (25 °C) storage of low-moisture, high-lipid, high-protein, cooked meat systems in MPET packaging is recommended for long-term storage to delay the progression of lipid oxidation and protein co-oxidation.
  11. Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R
    J Sci Food Agric, 2024 Apr;104(6):3216-3227.
    PMID: 38072678 DOI: 10.1002/jsfa.13208
    BACKGROUND: Kenaf seeds are underutilized kenaf plant by-products, containing essential nutrients including dietary fiber (DF), which can be potentially utilized as food ingredients. The present study aimed to evaluate the physicochemical characteristics of kenaf seed fiber fractions extracted from kenaf seed.

    RESULTS: Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions.

    CONCLUSION: These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.

  12. Mat Isa N, Mohd Ayob J, Ravi S, Mustapha NA, Ashari KS, Bejo MH, et al.
    Virusdisease, 2019 Sep;30(3):426-432.
    PMID: 31803810 DOI: 10.1007/s13337-019-00530-9
    The main aim of our study was to explore the genome sequence of the inclusion body hepatitis associated Fowl adenovirus serotype 8b (FAdV-8b) UPM04217 and to study its genomic organisation. The nucleotide sequence of the whole genome of FAdV-8b UPM04217 was determined by using the 454 Pyrosequencing platform and the Sanger sequencing method. The complete genome was found to be 44,059 bp long with 57.9% G + C content and shared 97.5% genome identity with the reference FAdV-E genome (HG isolate). Interestingly, the genome analysis using ORF Finder, Glimmer3 and FGENESV predicted a total of 39 open reading frames (ORFs) compared to the FAdV-E HG that possessed 46 ORFs. Fourteen ORFs located within the central genomic region and 16 ORFs located within the left and right ends of the genome were assigned as being the high protein-coding regions. The fusion of the small ORFs at the right end terminal specifically in ORF22 and ORF33 could be the result of gene truncation in the FAdV-E HG. The frame shift mutation in ORF25 and other mutations in ORF13 and ORF17 might have lead to the emergence of genes that could have different functions. Besides, one of the minor capsid components, pVI, in FAdV-8b UPM04217 shared the highest similarity of 93% with that of FAdV-D, while only 47% similarity was found with FAdV-E. From the gene arrangement layout of the FAdV genome, FAdV-8b UPM04217 showed intermediate evolution between the FAdV-E HG and the FAdV-D although it was apparently more similar to the FAdV-E HG.
  13. Mohd-Nor D, Ramli N, Sharuddin SS, Hassan MA, Mustapha NA, Ariffin H, et al.
    Microbes Environ, 2019 Jun 27;34(2):121-128.
    PMID: 30905894 DOI: 10.1264/jsme2.ME18104
    Despite efforts to address the composition of the microbial community during the anaerobic treatment of palm oil mill effluent (POME), its composition in relation to biodegradation in the full-scale treatment system has not yet been extensively examined. Therefore, a thorough analysis of bacterial and archaeal communities was performed in the present study using MiSeq sequencing at the different stages of the POME treatment, which comprised anaerobic as well as facultative anaerobic and aerobic processes, including the mixed raw effluent (MRE), mixing pond, holding tank, and final discharge phases. Based on the results obtained, the following biodegradation processes were suggested to occur at the different treatment stages: (1) Lactobacillaceae (35.9%) dominated the first stage, which contributed to high lactic acid production; (2) the higher population of Clostridiaceae in the mixing pond (47.7%) and Prevotellaceae in the holding tank (49.7%) promoted acetic acid production; (3) the aceticlastic methanogen Methanosaetaceae (0.6-0.8%) played a role in acetic acid degradation in the open digester and closed reactor for methane generation; (4) Syntrophomonas (21.5-29.2%) appeared to be involved in the degradation of fatty acids and acetic acid by syntrophic cooperation with the hydrogenotrophic methanogen, Methanobacteriaceae (0.6-1.3%); and (5) the phenols and alcohols detected in the early phases, but not in the final discharge phase, indicated the successful degradation of lignocellulosic materials. The present results contribute to a better understanding of the biodegradation mechanisms involved in the different stages of the full-scale treatment of POME.
  14. Hamzah N, Narayanan V, Ramli N, Mustapha NA, Mohammad Tahir NA, Tan LK, et al.
    BMJ Open, 2019 09 18;9(9):e028711.
    PMID: 31537559 DOI: 10.1136/bmjopen-2018-028711
    OBJECTIVES: To measure the clinical, structural and functional changes of an individualised structured cognitive rehabilitation in mild traumatic brain injury (mTBI) population.

    SETTING: A single centre study, Malaysia.

    PARTICIPANTS: Adults aged between 18 and 60 years with mTBI as a result of road traffic accident, with no previous history of head trauma, minimum of 9 years education and abnormal cognition at 3 months will be included. The exclusion criteria include pre-existing chronic illness or neurological/psychiatric condition, long-term medication that affects cognitive/psychological status, clinical evidence of substance intoxication at the time of injury and major polytrauma. Based on multiple estimated calculations, the minimum intended sample size is 50 participants (Cohen's d effect size=0.35; alpha level of 0.05; 85% power to detect statistical significance; 40% attrition rate).

    INTERVENTIONS: Intervention group will receive individualised structured cognitive rehabilitation. Control group will receive the best patient-centred care for attention disorders. Therapy frequency for both groups will be 1 hour per week for 12 weeks.

    OUTCOME MEASURES: Primary: Neuropsychological Assessment Battery-Screening Module (S-NAB) scores. Secondary: Diffusion Tensor Imaging (DTI) parameters and Goal Attainment Scaling score (GAS).

    RESULTS: Results will include descriptive statistics of population demographics, CogniPlus cognitive program and metacognitive strategies. The effect of intervention will be the effect size of S-NAB scores and mean GAS T scores. DTI parameters will be compared between groups via repeated measure analysis. Correlation analysis of outcome measures will be calculated using Pearson's correlation coefficient.

    CONCLUSION: This is a complex clinical intervention with multiple outcome measures to provide a comprehensive evidence-based treatment model.

    ETHICS AND DISSEMINATION: The study protocol was approved by the Medical Research Ethics Committee UMMC (MREC ID NO: 2016928-4293). The findings of the trial will be disseminated through peer-reviewed journals and scientific conferences.

    TRIAL REGISTRATION NUMBER: NCT03237676.

  15. Mohd Roby BH, Muhialdin BJ, Abadl MMT, Mat Nor NA, Marzlan AA, Lim SAH, et al.
    J Food Sci, 2020 Aug;85(8):2286-2295.
    PMID: 32691422 DOI: 10.1111/1750-3841.15302
    This study aimed to produce sourdough bread using an encapsulated kombucha sourdough starter culture without the addition of baker's yeast. The bioactive metabolites of kombucha sourdough starter and sourdough starter without kombucha were identified using 1 H-NMR analysis with multivariate analysis. The physical properties, including loaf volume, specific loaf volume, firmness, and water activity were determined following standard methods. The shelf life and consumer acceptability of the bread were also being evaluated. The principal component analyses showed the presence of 15 metabolites in kombucha sourdough starter. The major compounds that contributed to the differences from sourdough starter without kombucha were alpha-aminobutyric acid, alanine, acetic acid, riboflavin, pyridoxine, anserine, tryptophan, gluconic acid, and trehalose. The encapsulated kombucha sourdough starter increased the loaf volume (976.7 ± 25.2 mL) and specific loaf volume (4.38 ± 0.12 mL/g) compared to yeast bread. Thus, significant (P
  16. Bashar HMK, Juraimi AS, Ahmad-Hamdani MS, Uddin MK, Asib N, Anwar MP, et al.
    Plants (Basel), 2022 Nov 23;11(23).
    PMID: 36501249 DOI: 10.3390/plants11233209
    This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna subterranean L.) and maize (Zea mays L.), and six different types of weed e.g., Digitaria sanguinalis, Eleusine indica, Ageratum conyzoides, Cyperus iria, Euphorbia hirta, and Cyperus difformis. The parthenium methanolic leaf extracts at 25, 50, 75, and 100 g L-1 were sprayed in the test crops and weeds to assess their physiological and biochemical reactions after 6, 24, 48, and 72 h of spraying these compounds (HAS). The LC-MS analysis confirmed seven types of phytochemicals (caffeic acid, ferulic acid, vanillic acid, parthenin, chlorogenic acid, quinic acid, and p-anisic acid) in the parthenium leaf extract that were responsible for the inhibition of tested crops and weeds. From the HPLC analysis, higher amounts in leaf methanol extracts (40,752.52 ppm) than those of the stem (2664.09 ppm) and flower extracts (30,454.33 ppm) were recorded. Parthenium leaf extract at 100 g L-1 had observed higher phytotoxicity on all weed species except C. difformis. However, all crops were found safe under this dose of extraction. Although both crops were also affected to some extent, they could recover from the stress after a few days. The photosynthetic rate, transpiration rate, stomatal conductance, carotenoid and chlorophyll content were decreased due to the application of parthenium leaf extract. However, when parthenium leaf extract was applied at 100 g L-1 for 72 h, the malondialdehyde (MDA) and proline content were increased in all weeds. Enzymatic antioxidant activity (e.g., superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contents) were also elevated as a result of the sprayed parthenium leaf extract. The negative impact of physiological and biochemical responses as a consequence of the parthenium leaf extract led the weed species to be stressed and finally killed. The current findings show the feasibility of developing bioherbicide from the methanolic extract of parthenium leaf for controlling weeds, which will be cost-effective, sustainable, and environment friendly for crop production during the future changing climate.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links