Displaying all 6 publications

Abstract:
Sort:
  1. Arya A, Achoui M, Cheah SC, Abdelwahab SI, Narrima P, Mohan S, et al.
    PMID: 22474512 DOI: 10.1155/2012/627256
    We investigated the antioxidant potential, cytotoxic effect, and TNF-α inhibition activity with NF-κB activation response in a chloroform fraction of Centratherum anthelminticum seeds (CACF). The antioxidant property of CACF was evaluated with DPPH, ORAC, and FRAP assays, which demonstrated significant antioxidant activity. The cytotoxicity of CACF was tested using the MTT assay; CACF effective inhibitory concentrations (IC(50)) for A549, PC-3, MCF-7, and WRL-68 cells were 31.42 ± 5.4, 22.61 ± 1.7, 8.1 ± 0.9, and 54.93 ± 8.3 μg/mL, respectively. CACF effectively and dose-dependently inhibited TNF-α release, in vitro and in vivo. CACF inhibited TNF-α secretion in stimulated RAW264.7 macrophage supernatants with an IC(50) of 0.012 μg/mL, without affecting their viability; the highest dose tested reduced serum TNF-α by 61%. Acute toxicity testing in rats revealed that CACF was non-toxic at all doses tested. Matching the cytotoxic activity towards a mechanistic approach, CACF dose-dependently exhibited in vitro inhibitory effects against the activation of NF-κB translocation in MCF-7 cells. Preliminary phytochemical screening with GC/MS analysis detected 22 compounds in CACF, of which morpholinoethyl isothiocyanate was the most abundant (29.04%). The study reveals the potential of CACF in the treatment of breast cancer and in oxidative stress conditions with associated inflammatory responses.
  2. Isa NM, Abdelwahab SI, Mohan S, Abdul AB, Sukari MA, Taha MM, et al.
    Braz. J. Med. Biol. Res., 2012 Jun;45(6):524-30.
    PMID: 22358425
    The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC50, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µM and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µM. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.
  3. Narrima P, Paydar M, Looi CY, Wong YL, Taha H, Wong WF, et al.
    PMID: 24808916 DOI: 10.1155/2014/248103
    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.
  4. Abdelwahab SI, Hassan LE, Sirat HM, Yagi SM, Koko WS, Mohan S, et al.
    Fitoterapia, 2011 Dec;82(8):1190-7.
    PMID: 21871542 DOI: 10.1016/j.fitote.2011.08.002
    The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rat's paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS.
  5. Chong YM, Yin WF, Ho CY, Mustafa MR, Hadi AH, Awang K, et al.
    J Nat Prod, 2011 Oct 28;74(10):2261-4.
    PMID: 21910441 DOI: 10.1021/np100872k
    A methanol-soluble extract of the bark of Myristica cinnamomea was found to exhibit anti-quorum sensing activity, and subsequent bioassay-guided isolation led to the identification of the active compound malabaricone C (1). Compound 1 inhibited violacein production by Chromobacterium violaceum CV026 when grown in the presence of a cognate signaling molecule, N-3-oxohexanoyl-homoserine lactone. Furthermore, 1 inhibited the quorum sensing-regulated pyocyanin production and biofilm formation in Pseudomonas aeruginosa PAO1. These results suggest that the anti-quorum sensing activity of 1 and related molecules should be investigated further.
  6. Abdelwahab SI, Hassan LE, Abdul Majid AM, Yagi SM, Mohan S, Elhassan Taha MM, et al.
    PMID: 22685485 DOI: 10.1155/2012/490136
    Emerging evidence suggests that reactive oxygen (ROS) and nitrogen (RNS) species can contribute to diverse signalling pathways of inflammatory and tumour cells. Cucurbitacins are a group of highly oxygenated triterpenes. Many plants used in folk medicine to treat cancer have been found to contain cucurbitacins displaying potentially important anti-inflammatory actions. The current study was designed to investigate the anti-ROS and -RNS effects of cucurbitacin L 2-O-β-glucoside (CLG) and the role of these signaling factors in the apoptogenic effects of CLG on human colon cancer cells (HT-29). This natural cucurbitacin was isolated purely from Citrullus lanatus var. citroides (Cucurbitaceae). The results revealed that CLG was cytotoxic to HT-29. CLG increased significantly (P < 0.05) RNA and protein levels of caspase-3 in HT-29 cells when verified using a colorimetric assay and realtime qPCR, respectively. The results showed that lipopolysaccharide/interferon-gamma (LPS/INF-γ) increased nitrous oxide (NO) production inR AW264.7macrophages, whereas N(G)-nitro-L-argininemethyl ester (L-NAME) and CLG curtailed it. This compound did not reveal any cytotoxicity on RAW264.7 macrophages and human normal liver cells (WRL-68) when tested using the MTT assay. Findings of ferric reducing antioxidant power (FRAP) and oxygen radical absorption capacity (ORAC) assays demonstrate the antioxidant properties of CLG. The apoptogenic property of CLG on HT-29 cells is thus related to inhibition of reactive nitrogen and oxygen reactive species and the triggering of caspase-3-regulated apoptosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links