METHODS: A cross-sectional study was conducted on all primary care doctors working in government health clinics in Kuala Lumpur, Malaysia, from October 2016 to November 2016. A self-reported questionnaire was used, which included questions on demographic information, knowledge of in-flight medicine, and the attitude and confidence of primary care doctors in managing in-flight medical emergencies.
RESULTS: 182 doctors completed the questionnaire (92.9% response rate). The mean knowledge score was 8.9 out of a maximum score of 20. Only 11.5% of doctors felt confident managing in-flight medical emergencies. The majority (69.2%) would assist in an in-flight medical emergency, but the readiness to assist was reduced if someone else was already helping or if they were not familiar with the emergency. Total knowledge score was positively associated with confidence in managing in-flight medical emergencies (p = 0.03).
CONCLUSION: Only one in ten primary care doctors in this study felt confident managing in-flight medical emergencies. A higher total knowledge score of in-flight medical emergencies was positively associated with greater confidence in managing them. Educational programmes to address this gap in knowledge may be useful to improve doctors' confidence in managing in-flight medical emergencies.
METHODS: A total of 1447 ultrasound images, including 767 benign masses and 680 malignant masses were acquired from a tertiary hospital. A semi-supervised GAN model was developed to augment the breast ultrasound images. The synthesized images were subsequently used to classify breast masses using a convolutional neural network (CNN). The model was validated using a 5-fold cross-validation method.
RESULTS: The proposed GAN architecture generated high-quality breast ultrasound images, verified by two experienced radiologists. The improved performance of semi-supervised learning increased the quality of the synthetic data produced in comparison to the baseline method. We achieved more accurate breast mass classification results (accuracy 90.41%, sensitivity 87.94%, specificity 85.86%) with our synthetic data augmentation compared to other state-of-the-art methods.
CONCLUSION: The proposed radiomics model has demonstrated a promising potential to synthesize and classify breast masses on ultrasound in a semi-supervised manner.
Material and Methods: Twenty-one patients with AS and DISH who were surgically treated between 2009 and 2017 were recruited. Outcomes of interest included operative time, intra-operative blood loss, complications, duration of hospital stay and fracture union rate.
Results: Mean age was 69.2 ± 9.9 years. Seven patients had AS and 14 patients had DISH. 17 patients sustained AO type B3 fracture and 4 patients had type B1 fracture. Spinal trauma among these patients mostly involved thoracic spine (61.9%), followed by lumbar (28.6%) and cervical spine (9.5%). MISt using PPS was performed in 14 patients (66.7%) whereas open surgery in 7 patients (33.3%). Mean number of instrumentation level was 7.9 ± 1.6. Mean operative time in MISt and open group was 179.3 ± 42.3 minutes and 253.6 ± 98.7 minutes, respectively (p=0.028). Mean intra-operative blood loss in MISt and open group was 185.7 ± 86.4ml and 885.7 ± 338.8ml, respectively (p<0.001). Complications and union rate were comparable between both groups.
Conclusion: MISt using PPS lowers the operative time and reduces intra-operative blood loss in vertebral fractures in ankylosed disorders. However, it does not reduce the perioperative complication rate due to the premorbid status of the patients. There was no significant difference in the union rate between MISt and open surgery.
METHODS: We prospectively followed 100 patients (50:50 cuffed and non-cuffed PICC) and compared CRBSI rate between these groups. Daily review and similar catheter care were performed until a PICC-related complication, completion of therapy, death or defined end-of-study date necessitate removal. CRBSI was confirmed in each case by demonstrating concordance between isolates colonizing the PICC at the time of infection and from peripheral blood cultures.
RESULTS: A total of 50 cuffed PICC were placed for 1864 catheter-days. Of these, 12 patients (24%) developed infection, for which 5 patients (10%) had a CRBSI for a rate of 2.7 per 1000 catheter-days. Another 50 tunnelled non-cuffed PICCs were placed for 2057 catheter-days. Of these, 7 patients (14%) developed infection, for which 3 patients (6%) had a CRBSI. for a rate of 1.5 per 1000 catheter-days. The mean time to development of infection is 24 days in cuffed and 19 days in non-cuffed groups. The mean duration of utilization was significantly longer in non-cuffed than in cuffed group (43 days in non-cuffed vs 37 days in cuffed group, p = 0.008).
CONCLUSIONS: Cuffed PICC does not further reduce the rate of local or bloodstream infection. Tunnelled non-cuffed PICC is shown to be as effective if not better at reducing risk of CRBSI and providing longer catheter dwell time compared to cuffed PICC.