Displaying all 4 publications

Abstract:
Sort:
  1. Ng ZC, Roslan RA, Lau WJ, Gürsoy M, Karaman M, Jullok N, et al.
    Polymers (Basel), 2020 Aug 21;12(9).
    PMID: 32825561 DOI: 10.3390/polym12091883
    The non-selective property of conventional polyurethane (PU) foam tends to lower its oil absorption efficiency. To address this issue, we modified the surface properties of PU foam using a rapid solvent-free surface functionalization approach based on the chemical vapor deposition (CVD) method to establish an extremely thin yet uniform coating layer to improve foam performance. The PU foam was respectively functionalized using different monomers, i.e., perfluorodecyl acrylate (PFDA), 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA), and hexamethyldisiloxane (HMDSO), and the effect of deposition times (1, 5 and 10 min) on the properties of foam was investigated. The results showed that all the modified foams demonstrated a much higher water contact angle (i.e., greater hydrophobicity) and greater absorption capacities compared to the control PU foam. This is due to the presence of specific functional groups, e.g., fluorine (F) and silane (Si) in the modified PU foams. Of all, the PU/PHFBAi foam exhibited the highest absorption capacities, recording 66.68, 58.15, 53.70, and 58.38 g/g for chloroform, acetone, cyclohexane, and edible oil, respectively. These values were 39.19-119.31% higher than that of control foam. The promising performance of the PU/PHFBAi foam is due to the improved surface hydrophobicity attributed to the original perfluoroalkyl moieties of the HFBA monomer. The PU/PHFBAi foam also demonstrated a much more stable absorption performance compared to the control foam when both samples were reused for up to 10 cycles. This clearly indicates the positive impact of the proposed functionalization method in improving PU properties for oil absorption processes.
  2. Wong KC, Goh PS, Suzaimi ND, Ng ZC, Ismail AF, Jiang X, et al.
    J Colloid Interface Sci, 2021 Dec;603:810-821.
    PMID: 34237599 DOI: 10.1016/j.jcis.2021.06.156
    Membrane-based separation is an appealing solution to mitigate CO2 emission sustainably due to its energy efficiency and environmental friendliness. Attributed to its excellent separation endowed by nanomaterial incorporation, nanocomposite membrane is rigorously developed. This study explored the feasibility of boron nitride (BN) embedment and changes to formation mechanism of ultrathin selective layer of thin film nanocomposite (TFN) are investigated. The effects of amine-functionalization on nanosheet-polymer interaction and CO2 separation performance are also identified. Participation of nanosheets during interfacial polymerization reduced the crosslinking of selective layer, hence, improved TFN permeance while the formation of contorted diffusion paths by the nanosheets favors transport of small gases. Amine-functionalization enhanced the nanosheet-polymer interaction and elevated the membrane affinity towards CO2 which led to enhanced CO2 selectivity. The best TFN prepared in this study exhibited 37% and 20% increment in permeability and selectivity, respectively with respect to neat thin film composite (TFC). It is found that the CO2 separation performance of BN incorporated TFN is on par with many non-porous nanosheet-incorporated TFNs reported in literatures. The transport and barrier effects of BN and functionalized BN are discussed in detail to provide further insights into the development of commercially attractive CO2 selective TFN membranes.
  3. Seah MQ, Ng ZC, Lai GS, Lau WJ, Al-Ghouti MA, Alias NH, et al.
    Chemosphere, 2024 Apr 09;356:141960.
    PMID: 38604517 DOI: 10.1016/j.chemosphere.2024.141960
    Pesticides are used in agriculture to protect crops from pathogens, insects, fungi and weeds, but the release of pesticides into surface/groundwater by agriculture runoff and rain has raised serious concerns not only for the environment but also for human health. This study aimed to investigate the impact of surface properties on the performance of seven distinct membrane types utilized in nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) processes in eliminating multiple pesticides from spiked water. Out of the membranes tested, two are self-fabricated RO membranes while the rest are commercially available membranes. Our results revealed that the self-fabricated RO membranes performed better than other commercial membranes (e.g., SW30XLE, NF270, Duracid and FO) in rejecting the targeted pesticides by achieving at least 99% rejections regardless of the size of pesticides and their log Kow value. Despite the marginally lower water flux exhibited by the self-fabricated membrane compared to the commercial BW30 membrane, its exceptional ability to reject both mono- and divalent salts renders it more apt for treating water sources containing not only pesticides but also various dissolved ions. The enhanced performance of the self-fabricated RO membrane is mainly attributed to the presence of a hydrophilic interlayer (between the polyamide layer and substrate) and the incorporation of hydrophilic nanosheets in tuning its surface characteristics. The findings of the work provide insight into the importance of membrane surface modification for the application of not only the desalination process but also for the removal of contaminants of emerging concern.
  4. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links