METHODS: We used Cox regression to analyze data of a cohort of Asian children.
RESULTS: A total of 2608 children were included; median age at cART was 5.7 years. Time-updated weight for age z score < -3 was associated with mortality (P < 0.001) independent of CD4% and < -2 was associated with immunological failure (P ≤ 0.03) independent of age at cART.
CONCLUSIONS: Weight monitoring provides useful data to inform clinical management of children on cART in resource-limited settings.
METHODS: Children enrolled in the TREAT Asia Pediatric HIV Observational Database who had SM (weight-for-height or body mass index-for-age Z score less than -3) at ART initiation were analyzed. Generalized estimating equations were used to investigate poor weight recovery (weight-for-age Z score less than -3) and poor CD4% recovery (CD4% <25), and competing risk regression was used to analyze mortality and toxicity-associated treatment modification.
RESULTS: Three hundred fifty-five (11.9%) of 2993 children starting ART had SM. Their median weight-for-age Z score increased from -5.6 at ART initiation to -2.3 after 36 months. Not using trimethoprim-sulfamethoxazole prophylaxis at baseline was associated with poor weight recovery [odds ratio: 2.49 vs. using; 95% confidence interval (CI): 1.66-3.74; P < 0.001]. Median CD4% increased from 3.0 at ART initiation to 27.2 after 36 months, and 56 (15.3%) children died during follow-up. More profound SM was associated with poor CD4% recovery (odds ratio: 1.78 for Z score less than -4.5 vs. -3.5 to less than -3.0; 95% CI: 1.08-2.92; P = 0.023) and mortality (hazard ratio: 2.57 for Z score less than -4.5 vs. -3.5 to less than -3.0; 95% CI: 1.24-5.33; P = 0.011). Twenty-two toxicity-associated ART modifications occurred at a rate of 2.4 per 100 patient-years, and rates did not differ by malnutrition severity.
CONCLUSION: Trimethoprim-sulfamethoxazole prophylaxis is important for the recovery of weight-for-age in severely malnourished children starting ART. The extent of SM does not impede weight-for-age recovery or antiretroviral tolerability, but CD4% response is compromised in children with a very low weight-for-height/body mass index-for-age Z score, which may contribute to their high rate of mortality.
METHODS: Data collected 2001 to 2016 from PHIVA 10-19 years of age within a regional Asian cohort were analyzed using competing risk time-to-event and Poisson regression analyses to describe the nature and incidence of morbidity events and hospitalizations and identify factors associated with disease-related, treatment-related and overall morbidity. Morbidity was defined according to World Health Organization clinical staging criteria and U.S. National Institutes of Health Division of AIDS criteria.
RESULTS: A total 3,448 PHIVA contributed 17,778 person-years. Median age at HIV diagnosis was 5.5 years, and ART initiation was 6.9 years. There were 2,562 morbidity events and 307 hospitalizations. Cumulative incidence for any morbidity was 51.7%, and hospitalization was 10.0%. Early adolescence was dominated by disease-related infectious morbidity, with a trend toward noninfectious and treatment-related morbidity in later adolescence. Higher overall morbidity rates were associated with a CD4 count <350 cells/µL, HIV viral load ≥10,000 copies/mL and experiencing prior morbidity at age <10 years. Lower overall morbidity rates were found for those 15-19 years of age compared with 10-14 years and those who initiated ART at age 5-9 years compared with <5 or ≥10 years.
CONCLUSIONS: Half of our PHIVA cohort experienced a morbidity event, with a trend from disease-related infectious events to treatment-related and noninfectious events as PHIVA age. ART initiation to prevent immune system damage, optimize virologic control and minimize childhood morbidity are key to limiting adolescent morbidity.
METHODS: Perinatally HIV-infected Asian adolescents (10-19 years) with documented virologic suppression (two consecutive viral loads [VLs] <400 copies/mL ≥6 months apart) were included. Baseline was the date of the first VL <400 copies/mL at age ≥10 years or the 10th birthday for those with prior suppression. Cox proportional hazards models were used to identify predictors of postsuppression VR (VL >1,000 copies/mL).
RESULTS: Of 1,379 eligible adolescents, 47% were males. At baseline, 22% were receiving protease inhibitor-containing regimens; median CD4 cell count (interquartile range [IQR]) was 685 (448-937) cells/mm3; 2% had preadolescent virologic failure (VF) before subsequent suppression. During adolescence, 180 individuals (13%) experienced postsuppression VR at a rate of 3.4 (95% confidence interval: 2.9-3.9) per 100 person-years, which was consistent over time. Median time to VR during adolescence (IQR) was 3.3 (2.1-4.8) years. Wasting (weight-for-age z-score
DESIGN: Ongoing observational database collating clinical data on HIV-infected children and adolescents in Asia.
METHODS: Data from 2001 to 2016 relating to adolescents (10-19 years) with perinatal HIV infection were analysed to describe characteristics at adolescent entry and transition and combination antiretroviral therapy (cART) regimens across adolescence. A competing risk regression analysis was used to determine characteristics at adolescent entry associated with mortality. Outcomes at transition were compared on the basis of age at cART initiation.
RESULTS: Of 3448 PHIVA, 644 had reached transition. Median age at HIV diagnosis was 5.5 years, cART initiation 7.2 years and transition 17.9 years. At adolescent entry, 35.0% had CD4+ cell count less than 500 cells/μl and 51.1% had experienced a WHO stage III/IV clinical event. At transition, 38.9% had CD4+ cell count less than 500 copies/ml, and 53.4% had experienced a WHO stage III/IV clinical event. Mortality rate was 0.71 per 100 person-years, with HIV RNA ≥1000 copies/ml, CD4+ cell count less than 500 cells/μl, height-for-age or weight-for-age z-score less than -2, history of a WHO stage III/IV clinical event or hospitalization and at least second cART associated with mortality. For transitioning PHIVA, those who commenced cART age less than 5 years had better virologic and immunologic outcomes, though were more likely to be on at least second cART.
CONCLUSION: Delayed HIV diagnosis and cART initiation resulted in considerable morbidity and poor immune status by adolescent entry. Durable first-line cART regimens to optimize disease control are key to minimizing mortality. Early cART initiation provides the best virologic and immunologic outcomes at transition.
METHODS: Data (2014-2018) from a regional cohort of Asian PHIVA who received at least 6 months of continuous cART were analyzed. Treatment failure was defined according to World Health Organization criteria. Descriptive analyses were used to report treatment failure and subsequent management and evaluate postfailure CD4 count and viral load trends. Kaplan-Meier survival analyses were used to compare the cumulative incidence of death and loss to follow-up (LTFU) by treatment failure status.
RESULTS: A total 3196 PHIVA were included in the analysis with a median follow-up period of 3.0 years, of whom 230 (7.2%) had experienced 292 treatment failure events (161 virologic, 128 immunologic, 11 clinical) at a rate of 3.78 per 100 person-years. Of the 292 treatment failure events, 31 (10.6%) had a subsequent cART switch within 6 months, which resulted in better immunologic and virologic outcomes compared to those who did not switch cART. The 5-year cumulative incidence of death and LTFU following treatment failure was 18.5% compared to 10.1% without treatment failure.
CONCLUSIONS: Improved implementation of virologic monitoring is required to realize the benefits of virologic determination of cART failure. There is a need to address issues related to accessibility to subsequent cART regimens, poor adherence limiting scope to switch regimens, and the role of antiretroviral resistance testing.
METHODS: Data on children with perinatally acquired HIV aged <18 years on first-line, non-nucleoside reverse transcriptase inhibitor-based cART with viral suppression (two consecutive pVL <400 copies/mL over a six-month period) were included from a regional cohort study; those exposed to prior mono- or dual antiretroviral treatment were excluded. Frequency of pVL monitoring was determined at the site-level based on the median rate of pVL measurement: annual 0.75 to 1.5, and semi-annual >1.5 tests/patient/year. Treatment failure was defined as virologic failure (two consecutive pVL >1000 copies/mL), change of antiretroviral drug class, or death. Baseline was the date of the second consecutive pVL <400 copies/mL. Competing risk regression models were used to identify predictors of treatment failure.
RESULTS: During January 2008 to March 2015, there were 1220 eligible children from 10 sites that performed at least annual pVL monitoring, 1042 (85%) and 178 (15%) were from sites performing annual (n = 6) and semi-annual pVL monitoring (n = 4) respectively. Pre-cART, 675 children (55%) had World Health Organization clinical stage 3 or 4, the median nadir CD4 percentage was 9%, and the median pVL was 5.2 log10 copies/mL. At baseline, the median age was 9.2 years, 64% were on nevirapine-based regimens, the median cART duration was 1.6 years, and the median CD4 percentage was 26%. Over the follow-up period, 258 (25%) CLWH with annual and 40 (23%) with semi-annual pVL monitoring developed treatment failure, corresponding to incidence rates of 5.4 (95% CI: 4.8 to 6.1) and 4.3 (95% CI: 3.1 to 5.8) per 100 patient-years of follow-up respectively (p = 0.27). In multivariable analyses, the frequency of pVL monitoring was not associated with treatment failure (adjusted hazard ratio: 1.12; 95% CI: 0.80 to 1.59).
CONCLUSIONS: Annual compared to semi-annual pVL monitoring was not associated with an increased risk of treatment failure in our cohort of virally suppressed children with perinatally acquired HIV on first-line NNRTI-based cART.
METHODS: Regional Asian data (2001-2016) were analyzed to describe PHIVA who experienced ≥2 weeks of lamivudine or emtricitabine monotherapy or treatment interruption and trends in CD4 count and HIV viral load during and after episodes. Survival analyses were used for World Health Organization (WHO) stage III/IV clinical and immunologic event-free survival during monotherapy or treatment interruption, and a Poisson regression to determine factors associated with monotherapy or treatment interruption.
RESULTS: Of 3,448 PHIVA, 84 (2.4%) experienced 94 monotherapy episodes, and 147 (4.3%) experienced 174 treatment interruptions. Monotherapy was associated with older age, HIV RNA >400 copies/mL, younger age at ART initiation, and exposure to ≥2 combination ART regimens. Treatment interruption was associated with CD4 count <350 cells/μL, HIV RNA ≥1,000 copies/mL, ART adverse event, and commencing ART age ≥10 years compared with age <3 years. WHO clinical stage III/IV 1-year event-free survival was 96% and 85% for monotherapy and treatment interruption cohorts, respectively. WHO immunologic stage III/IV 1-year event-free survival was 52% for both cohorts. Those who experienced monotherapy or treatment interruption for more than 6 months had worse immunologic and virologic outcomes.
CONCLUSIONS: Until challenges of treatment adherence, engagement in care, and combination ART durability/tolerability are met, monotherapy and treatment interruption will lead to poor long-term outcomes.
METHODS: Individuals enrolled in the Therapeutics Research, Education, and AIDS Training in Asia Pediatric HIV Observational Database were included if they started ART at ages 1 month-14 years and had both height and weight measurements available at ART initiation (baseline). Generalized estimating equations were used to identify factors associated with change in height-for-age z-score (HAZ), follow-up HAZ ≥ -2, change in weight-for-age z-score (WAZ), and follow-up WAZ ≥ -2.
RESULTS: A total of 3217 children were eligible for analysis. The adjusted mean change in HAZ among cotrimoxazole and non-cotrimoxazole users did not differ significantly over the first 24 months of ART. In children who were stunted (HAZ < -2) at baseline, cotrimoxazole use was not associated with a follow-up HAZ ≥ -2. The adjusted mean change in WAZ among children with a baseline CD4 percentage (CD4%) >25% became significantly different between cotrimoxazole and non-cotrimoxazole users after 6 months of ART and remained significant after 24 months (overall P < .01). Similar changes in WAZ were observed in those with a baseline CD4% between 10% and 24% (overall P < .01). Cotrimoxazole use was not associated with a significant difference in follow-up WAZ in children with a baseline CD4% <10%. In those underweight (WAZ < -2) at baseline, cotrimoxazole use was associated with a follow-up WAZ ≥ -2 (adjusted odds ratio, 1.70 vs not using cotrimoxazole [95% confidence interval, 1.28-2.25], P < .01). This association was driven by children with a baseline CD4% ≥10%.
CONCLUSIONS: Cotrimoxazole use is associated with benefits to WAZ but not HAZ during early ART in Asian children.
SETTING: Asian regional cohort incorporating 16 pediatric HIV services across 6 countries.
METHODS: Data from PHIVA (aged 10-19 years) who received combination antiretroviral therapy 2007-2016 were used to analyze LTFU through (1) an International epidemiology Databases to Evaluate AIDS (IeDEA) method that determined LTFU as >90 days late for an estimated next scheduled appointment without returning to care and (2) the absence of patient-level data for >365 days before the last data transfer from clinic sites. Descriptive analyses and competing-risk survival and regression analyses were used to evaluate LTFU epidemiology and associated factors when analyzed using each method.
RESULTS: Of 3509 included PHIVA, 275 (7.8%) met IeDEA and 149 (4.3%) met 365-day absence LTFU criteria. Cumulative incidence of LTFU was 19.9% and 11.8% using IeDEA and 365-day absence criteria, respectively. Risk factors for LTFU across both criteria included the following: age at combination antiretroviral therapy initiation <5 years compared with age ≥5 years, rural clinic settings compared with urban clinic settings, and high viral loads compared with undetectable viral loads. Age 10-14 years compared with age 15-19 years was another risk factor identified using 365-day absence criteria but not IeDEA LTFU criteria.
CONCLUSIONS: Between 12% and 20% of PHIVA were determined LTFU with treatment fatigue and rural treatment settings consistent risk factors. Better tracking of adolescents is required to provide a definitive understanding of LTFU and optimize evidence-based models of care.
METHODS: Children enrolled in the TREAT Asia Pediatric HIV Observational Database were included if they started antiretroviral therapy (ART) on or after January 1st, 2008. Factors associated with severe recurrent bacterial pneumonia were assessed using competing-risk regression.
RESULTS: A total of 3,944 children were included in the analysis; 136 cases of severe recurrent bacterial pneumonia were reported at a rate of 6.5 [95% confidence interval (CI): 5.5-7.7] events per 1,000 patient-years. Clinical factors associated with severe recurrent bacterial pneumonia were younger age [adjusted subdistribution hazard ratio (aHR): 4.4 for <5 years versus ≥10 years, 95% CI: 2.2-8.4, P < 0.001], lower weight-for-age z-score (aHR: 1.5 for -2.0, 95% CI: 1.1-2.3, P = 0.024), pre-ART diagnosis of severe recurrent bacterial pneumonia (aHR: 4.0 versus no pre-ART diagnosis, 95% CI: 2.7-5.8, P < 0.001), past diagnosis of symptomatic lymphoid interstitial pneumonitis or chronic HIV-associated lung disease, including bronchiectasis (aHR: 4.8 versus no past diagnosis, 95% CI: 2.8-8.4, P < 0.001), low CD4% (aHR: 3.5 for <10% versus ≥25%, 95% CI: 1.9-6.4, P < 0.001) and detectable HIV viral load (aHR: 2.6 versus undetectable, 95% CI: 1.2-5.9, P = 0.018).
CONCLUSIONS: Children <10-years-old and those with low weight-for-age, a history of respiratory illness, low CD4% or poorly controlled HIV are likely to gain the greatest benefit from targeted prevention and treatment programs to reduce the burden of bacterial pneumonia in children living with HIV.
METHODS: CLHIV were considered to have lipid or glucose abnormalities if they had total cholesterol ≥200 mg/dL, high-density lipoprotein (HDL) ≤35 mg/dL, low-density lipoprotein (LDL) ≥100 mg/dL, triglycerides (TG) ≥110 mg/dL, or fasting glucose >110 mg/dL. Factors associated with lipid and glucose abnormalities were assessed by logistic regression.
RESULTS: Of 951 CLHIV, 52% were male with a median age of 8.0 (interquartile range [IQR] 5.0-12.0) years at ART start and 15.0 (IQR 12.0-18.0) years at their last clinic visit. 89% acquired HIV perinatally, and 30% had ever used protease inhibitors (PIs). Overall, 225 (24%) had hypercholesterolemia, 105 (27%) low HDL, 213 (58%) high LDL, 369 (54%) hypertriglyceridemia, and 130 (17%) hyperglycemia. Hypercholesterolemia was more likely among females (versus males, aOR 1.93, 95% CI 1.40-2.67). Current PIs use was associated with hypercholesterolemia (current use: aOR 1.54, 95% CI 1.09-2.20); low HDL (current use: aOR 3.16, 95% CI 1.94-5.15; prior use: aOR 10.55, 95% CI 2.53-43.95); hypertriglyceridemia (current use: aOR 3.90, 95% CI 2.65-5.74; prior use: aOR 2.89, 95% CI 1.31-6.39); high LDL (current use: aOR 1.74, 95% CI 1.09-2.76); and hyperglycemia (prior use: aOR 2.43, 95% CI 1.42-4.18).
CONCLUSION: More than half and one-fifth of CLHIV have dyslipidemia and hyperglycemia, respectively. Routine paediatric HIV care should include metabolic monitoring. The association between PIs use and dyslipidemia emphasizes the importance of rapidly transitioning to integrase inhibitor-containing regimens.