Displaying all 3 publications

Abstract:
Sort:
  1. Tani N, Tsumura Y, Kado T, Taguchi Y, Lee SL, Muhammad N, et al.
    Ann Bot, 2009 Dec;104(7):1421-34.
    PMID: 19808773 DOI: 10.1093/aob/mcp252
    BACKGROUND AND AIMS: Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

    METHODS: Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

    KEY RESULTS: The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

    CONCLUSIONS: The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.

  2. Naito Y, Kanzaki M, Numata S, Obayashi K, Konuma A, Nishimura S, et al.
    J Plant Res, 2008 Jan;121(1):33-42.
    PMID: 17943228
    We monitored the reproductive status of all trees with diameters at breast height (dbh) >30 cm in a 40-ha plot at Pasoh, west Malaysia, and investigated the individual fecundity of 15 Shorea acuminata Dyer (Dipterocarpaceae) trees using seed-trapping methods during two consecutive general flowering periods in 2001 (GF2001) and 2002 (GF2002). The proportion of flowering trees was higher, and not dependent on size, in GF2002 (84.2%), than in GF2001 (54.5%), when flowering mainly occurred in trees with a dbh < or =70 cm. Fecundity parameters of individual trees per event varied widely (221,000-35,200,000 flowers, 0-139,000 mature seeds, and 1.04-177 kg total dry matter mass of fruit (TDM) per tree). Monotonic increases with increasing tree size were observed for flower production and TDM amongst trees up to 90 cm in dbh, but not for mature seed production or for any of these parameters amongst larger trees. The pattern of reproductive investment during the two consecutive reproductive events clearly differed between medium-sized and large trees; the former concentrated their reproductive investment in one of the reproductive events whereas the latter allocated their investment more evenly to both reproductive events. Our results suggest size-related differences in the resource allocation pattern for reproduction.
  3. Kondo T, Nishimura S, Tani N, Ng KK, Lee SL, Muhammad N, et al.
    Am J Bot, 2016 Nov;103(11):1912-1920.
    PMID: 27797714
    PREMISE OF THE STUDY: In tropical rainforests of Southeast Asia, a highly fecund thrips (Thrips spp.) responds rapidly to the mass flowering at multiple-year intervals characteristic of certain species such as the canopy tree studied here, Shorea acuminata, by feeding on flower resources. However, past DNA analyses of pollen adherent to thrips bodies revealed that the thrips promoted a very high level of self-pollination. Here, we identified the pollinator that contributes to cross-pollination and discuss ways that the pollination system has adapted to mass flowering.

    METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.

    KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.

    CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links