Displaying all 7 publications

Abstract:
Sort:
  1. Wong SK, Lim YY, Abdullah NR, Nordin FJ
    Pharmacognosy Res, 2011 Apr;3(2):100-6.
    PMID: 21772753 DOI: 10.4103/0974-8490.81957
    The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves.
  2. Wong SK, Lim YY, Abdullah NR, Nordin FJ
    PMID: 21232161 DOI: 10.1186/1472-6882-11-3
    Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids.
  3. Cheah YH, Nordin FJ, Tee TT, Azimahtol HL, Abdullah NR, Ismail Z
    Anticancer Res, 2008 Nov-Dec;28(6A):3677-89.
    PMID: 19189649
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhizza Roxb (Zingerberaceae). Recent studies of xanthorrhizol in cell cultures strongly support the role of xanthorrhizol as an antiproliferative agent. In our study, we tested the antiproliferative effect of xanthorrhizol using different breast cancer cell lines. The invasive breast cancer cell line, MDA-MB-231, was then selected for further investigations. Treatment with xanthorrhizol caused 50% growth inhibition on MDA-MB-231 cells at 8.67 +/- 0.79 microg/ml as determined by sulforhodamine B (SRB) assay. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to xanthorrhizol treatment. Immunofluorescence staining using antibody MitoCapture and fluorescein isothiocyanate (FITC)-labeled cytochrome c revealed the possibility of altered mitochondrial transmembrane potential and the release of cytochrome c respectively. This was further confirmed by Western-blotting, where cytochrome c was showed to migrate from mitochondrial fraction to the cytosol fraction of treated MDA-MB-231 cells. Caspase activity assay showed the involvement of caspase-3 and caspase-9, but not caspase-6 or caspase-8 in MDA-MB-231 apoptotic cell death. Subsequently, cleavage of PARP-1 protein is suggested. These data suggest treatment with xanthorrhizol modulates MDA-MB-231 cell apoptosis through the mitochondria-mediated pathway subsequent to the disruption of mitochondrial transmembrane potential, release of cytochrome c, activation of caspase-3 and caspase-9, and the modulation of PARP-1 protein.
  4. Low ZX, Teo MYM, Nordin FJ, Dewi FRP, Palanirajan VK, In LLA
    Int J Mol Sci, 2022 Oct 25;23(21).
    PMID: 36361655 DOI: 10.3390/ijms232112866
    Curcumin (CUR), a curcuminoid originating from turmeric root, possesses diverse pharmacological applications, including potent anticancer properties. However, the use of this efficacious agent in cancer therapy has been limited due to low water solubility and poor bioavailability. To overcome these problems, a drug delivery system was established as an excipient allowing improved dispersion in aqueous media coupled with enhanced in vitro anticancer effects. Different analyses such as UV-vis spectroscopy, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), solubility and dissolution assays were determined to monitor the successful encapsulation of CUR within the inner cavity of a β-cyclodextrin (β-CD) complex. The results indicated that water solubility was improved by 205.75-fold compared to pure CUR. Based on cytotoxicity data obtained from MTT assays, the inclusion complex exhibited a greater decrease in cancer cell viability compared to pure CUR. Moreover, cancer cell migration rates were decreased by 75.5% and 38.92%, invasion rates were decreased by 37.7% and 35.7%, while apoptosis rates were increased by 26.3% and 14.2%, and both caused caspase 3 activation toward colorectal cancer cells (SW480 and HCT116 cells). This efficacious formulation that enables improved aqueous dispersion is potentially useful and can be extended for various chemotherapeutic applications. Preliminary toxicity evaluation also indicated that its composition can be safely used in humans for cancer therapy.
  5. Nordin FJ, Pearanpan L, Chan KM, Kumolosasi E, Yong YK, Shaari K, et al.
    PLoS One, 2021;16(8):e0256012.
    PMID: 34379689 DOI: 10.1371/journal.pone.0256012
    Triple-negative breast cancer is the main type of breast carcinoma that causes mortality among women because of the limited treatment options and high recurrence. Chronic inflammation has been linked with the tumor microenvironment (TME) in breast cancer progression. Clinacanthus nutans (CN) has gained much attention because of its anticancer properties, but its mechanism remains unclear. We aimed to study the qualitative phytochemical content and elucidate the cytotoxicity effects of CN on human triple-negative breast cancer (TNBC), MDA-MB-231 and human macrophage-like cells such as THP-1 by using sulforhodamine B (SRB) assay. As highly metastatic cells, MDA-MB-231 cells can migrate to the distal position, the effect of CN on migration were also elucidated using the scratch assay. The CN effects on ameliorating chronic inflammation in TME were studied following the co-culture of MDA-MB-231/THP-1 macrophages. The cytokine expression levels of IL-6, IL-1β and tumor necrosis factor-alpha (TNF-α) were determined using ELISA assays. The results showed that both ethanolic and aqueous CN extracts contained alkaloid, phenol and tannin, flavonoid, terpenoid, glycoside and steroid. However, saponin was only found in the aqueous extract of CN. CN was not cytotoxic to both MDA-MB-231 and THP-1 cells. The ability of MDA-MB-231 to migrate was also not halted by CN treatment. However, CN ethanol extract decreased IL-6 at 25 μg/mL (p = 0.02) and 100 μg/mL (p = 0.03) but CN aqueous extract increased IL-6 expression at 50 μg/mL (p = 0.08) and 100 μg/mL (p = 0.02). IL-1β showed decreased expression after treated with CN ethanol and CN aqueous both at 25 μg/mL (p = 0.03). TNF-α were significantly decreased after CN ethanol treatment at concentration 25- (p = 0.001), 50- (p = 0.000) and 100 μg/mL (p = 0.000). CN aqueous extract slightly inhibited TNF-α at all 25-50- and 100 μg/mL (p = 0.001, p = 0.000, p = 0.000, respectively). Overall, CN acts by ameliorating the pro-inflammatory condition in the TME and may be a potential strategy for its anticancer mechanism on highly metastatic breast cancer condition. The major pathways that link both cancer and inflammation were NF-κB and STATs thus further study on the upstream and downstream pathways is needed to fully understand the mechanism of CN extracts in cooling the inflamed TME in breast cancer.
  6. Cheah YH, Nordin FJ, Sarip R, Tee TT, Azimahtol HL, Sirat HM, et al.
    Cancer Cell Int, 2009;9:1.
    PMID: 19118501 DOI: 10.1186/1475-2867-9-1
    It has been suggested that combined effect of natural products may improve the treatment effectiveness in combating proliferation of cancer cells. The present study was undertaken to evaluate the possibility that the combination of xanthorrhizol and curcumin might show synergistic growth inhibitory effect towards MDA-MB-231 human breast cancer cells via apoptosis induction. The effective dose that produced 50% growth inhibition (GI50) was calculated from the log dose-response curve of fixed-combinations of xanthorrhizol and curcumin generated from the sulforhodamine B (SRB) assay. The experimental GI50 value was used to determine the synergistic activity of the combination treatment by isobolographic analysis and combination-index method. Further investigation of mode of cell death induced by the combination treatment was conducted in the present study.
  7. Ooi TC, Nordin FJ, Rahmat NS, Abdul Halim SN', Sarip R, Chan KM, et al.
    PMID: 36868695 DOI: 10.1016/j.mrgentox.2022.503581
    Complexes of coinage metals can potentially be used as alternatives to platinum-based chemotherapeutic drugs. Silver is a coinage metal that can potentially improve the spectrum of efficacy in various cancers treatment, such as malignant melanoma. Melanoma is the most aggressive form of skin cancer that is often diagnosed in young and middle-aged adults. Silver has high reactivity with skin proteins and can be developed as a malignant melanoma treatment modality. Therefore, this study aims to identify the anti-proliferative and genotoxic effects of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine ligands in the human melanoma SK-MEL-28 cell line. The anti-proliferative effects of a series of silver(I) complex compounds labelled as OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were evaluated on SK-MEL-28 cells by using the Sulforhodamine B assay. Then, DNA damage analysis was performed in a time-dependent manner (30 min, 1 h and 4 h) by using alkaline comet assay to investigate the genotoxicity of OHBT and BrOHMBT at their respective IC50 values. The mode of cell death was studied using Annexin V-FITC/PI flow cytometry assay. Our current findings demonstrated that all silver(I) complex compounds showed good anti-proliferative activity. The IC50 values of OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were 2.38 ± 0.3 μM, 2.70 ± 0.17 μM, 1.34 ± 0.22 μM, 2.82 ± 0.45 μM, and 0.64 ± 0.04 μM respectively. Then, DNA damage analysis showed that OHBT and BrOHMBT could induce DNA strand breaks in a time-dependent manner, with OHBT being more prominent than BrOHMBT. This effect was accompanied by apoptosis induction in SK-MEL-28, as evaluated using Annexin V-FITC/PI assay. In conclusion, silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine exerted anti-proliferative activities by inhibiting cancer cell growth, inducing significant DNA damage and ultimately resulting in apoptosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links