Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Lee WC, Russell B, Lau YL, Nosten F, Rénia L
    Am J Trop Med Hyg, 2022 Apr 11;106(6):1670-4.
    PMID: 35405642 DOI: 10.4269/ajtmh.21-1229
    In malaria, rosetting is a phenomenon involving the cytoadherence of uninfected erythrocytes to infected erythrocytes (IRBC) harboring the late erythrocytic stage of Plasmodium spp. Recently, artesunate-stimulated rosetting has been demonstrated to confer a survival advantage to P. falciparum late-stage IRBC. This study investigated the rosetting response of P. falciparum and P. vivax clinical isolates to ex vivo antimalarial treatments. Brief exposure of IRBC to chloroquine, mefloquine, amodiaquine, quinine, and lumefantrine increased the rosetting rates of P. falciparum and P. vivax. Furthermore, the ex vivo combination of artesunate with mefloquine and piperaquine also resulted in increased the rosetting rates. Drug-mediated rosette-stimulation has important implications for the therapeutic failure of rapidly cleared drugs such as artesunate. However, further work is needed to establish the ramifications of increased rosetting rates by drugs with longer half-lifves, such as chloroquine, mefloquine, and piperaquine.
  2. Permala J, Tarning J, Nosten F, White NJ, Karlsson MO, Bergstrand M
    PMID: 28242661 DOI: 10.1128/AAC.02491-16
    Intermittent preventive treatment (IPT) is used to reduce malaria morbidity and mortality, especially in vulnerable groups such as children and pregnant women. IPT with the fixed dose combination of piperaquine (PQ) and dihydroartemisinin (DHA) is being evaluated as a potential mass treatment to control and eliminate artemisinin-resistant falciparum malaria. This study explored alternative DHA-PQ adult dosing regimens compared to the monthly adult dosing regimen currently being studied in clinical trials. A time-to-event model describing the concentration-effect relationship of preventive DHA-PQ administration was used to explore the potential clinical efficacy of once-weekly adult dosing regimens. Loading dose strategies were evaluated and the advantage of weekly dosing regimen was tested against different degrees of adherence. Assuming perfect adherence, three tablets weekly dosing regimen scenarios maintained malaria incidence of 0.2 to 0.3% per year compared to 2.1 to 2.6% for all monthly dosing regimen scenarios and 52% for the placebo. The three tablets weekly dosing regimen was also more forgiving (i.e., less sensitive to poor adherence), resulting in a predicted ∼4% malaria incidence per year compared to ∼8% for dosing regimen of two tablets weekly and ∼10% for monthly regimens (assuming 60% adherence and 35% interindividual variability). These results suggest that weekly dosing of DHA-PQ for malaria chemoprevention would improve treatment outcomes compared to monthly administration by lowering the incidence of malaria infections, reducing safety concerns about high PQ peak plasma concentrations and being more forgiving. In addition, weekly dosing is expected to reduce the selection pressure for PQ resistance.
  3. Lee WC, Russell B, Lau YL, Fong MY, Chu C, Sriprawat K, et al.
    PLoS One, 2013;8(4):e60303.
    PMID: 23565221 DOI: 10.1371/journal.pone.0060303
    The quantity of circulating reticulocytes is an important indicator of erythropoietic activity in response to a wide range of haematological pathologies. While most modern laboratories use flow cytometry to quantify reticulocytes, most field laboratories still rely on 'subvital' staining. The specialist 'subvital' stains, New Methylene Blue (NMB) and Brilliant Crésyl Blue are often difficult to procure, toxic, and show inconsistencies between batches. Here we demonstrate the utility of Giemsa's stain (commonly used microbiology and parasitology) in a 'subvital' manner to provide an accurate method to visualize and count reticulocytes in blood samples from normal and malaria-infected individuals.
  4. van Enter BJD, Lau YL, Ling CL, Watthanaworawit W, Sukthana Y, Lee WC, et al.
    Am J Trop Med Hyg, 2017 Jul;97(1):232-235.
    PMID: 28719309 DOI: 10.4269/ajtmh.16-0999
    Toxoplasma gondii primary infection in pregnancy is associated with poor obstetric outcomes. This study aimed to determine the seroprevalence of Toxoplasma infection in pregnant migrant and refugee women from Myanmar attending antenatal care in Thailand. A random selection of 199 residual blood samples from first antenatal screen in 2014-2015 was tested for Toxoplasma IgG and IgM antibodies. Seroprevalence of Toxoplasma infection was 31.7% (95% confidence interval = 25.6-38.4). Avidity testing in the three positive IgM cases indicated all were past infections. Multiparity (≥ 3 children) was significantly associated with higher Toxoplasma seropositivity rates. Seroprevalence of T. gondii infection in this pregnant population is similar to the only other report from Myanmar, where multiparity was also identified as a significant association. Toxoplasma infection is important in pregnant women. Nevertheless, in this marginalized population, this infection may be given less priority, due to resource constraints in providing the most basic components of safe motherhood programs.
  5. Lee WC, Russell B, Lee B, Chu CS, Phyo AP, Sriprawat K, et al.
    EBioMedicine, 2021 Nov;73:103680.
    PMID: 34749300 DOI: 10.1016/j.ebiom.2021.103680
    BACKGROUND: Artemisinin (ART) resistance in Plasmodium falciparum is thought to occur during the early stage of the parasite's erythrocytic cycle. Here, we identify a novel factor associated with the late stage parasite development that contributes to ART resistance.

    METHODS: Rosetting rates of clinical isolates pre- and post- brief (one hour) exposure to artesunate (AS, an ART derivative) were evaluated. The effects of AS-mediated rosetting on the post-AS-exposed parasite's replication and survival, as well as the extent of protection by AS-mediated rosetting on different parasite stages were investigated. The rosetting ligands, mechanisms, and gene mutations involved were studied.

    FINDINGS: Brief AS exposure stimulated rosetting, with AS-resistant isolates forming more rosettes in a more rapid manner. AS-mediated rosetting enabled infected erythrocytes (IRBC) to withstand AS exposure for several hours and protected the IRBC from phagocytosis. When their rosetting ability was blocked experimentally, the post-AS exposure survival advantage by the AS-resistant parasites was abrogated. Deletions in two genes coding for PfEMP1 exon 2 (PF3D7_0200300 and PF3D7_0223300) were found to be associated with AS-mediated rosetting, and these mutations were significantly selected through time in the parasite population under study, along with the K13 mutations, a molecular marker of ART-resistance.

    INTERPRETATION: Rapid ART parasite clearance is driven by the direct oxidative damages on IRBC by ART and the phagocytic destruction of the damaged IRBC. Rosetting serves as a rapid 'buying time' strategy that allows more parasites to complete schizont maturation, reinvasion and subsequent development into the intrinsically less ART-susceptible ring stage.

    FUNDING: A*STAR, NMRC-OF-YIRG, HRC e-ASIA, Wellcome.

  6. Lee WC, Malleret B, Lau YL, Mauduit M, Fong MY, Cho JS, et al.
    Blood, 2014 May 01;123(18):e100-9.
    PMID: 24652986 DOI: 10.1182/blood-2013-12-541698
    Rosetting phenomenon has been linked to malaria pathogenesis. Although rosetting occurs in all causes of human malaria, most data on this subject has been derived from Plasmodium falciparum. Here, we investigate the function and factors affecting rosette formation in Plasmodium vivax. To achieve this, we used a range of novel ex vivo protocols to study fresh and cryopreserved P vivax (n = 135) and P falciparum (n = 77) isolates from Thailand. Rosetting is more common in vivax than falciparum malaria, both in terms of incidence in patient samples and percentage of infected erythrocytes forming rosettes. Rosetting to P vivax asexual and sexual stages was evident 20 hours postreticulocyte invasion, reaching a plateau after 30 hours. Host ABO blood group, reticulocyte count, and parasitemia were not correlated with P vivax rosetting. Importantly, mature erythrocytes (normocytes), rather than reticulocytes, preferentially form rosetting complexes, indicating that this process is unlikely to directly facilitate merozoite invasion. Although antibodies against host erythrocyte receptors CD235a and CD35 had no effect, Ag-binding fragment against the BRIC 4 region of CD236R significantly inhibited rosette formation. Rosetting assays using CD236R knockdown normocytes derived from hematopoietic stem cells further supports the role of glycophorin C as a receptor in P vivax rosette formation.
  7. Zhang R, Lee WC, Lau YL, Albrecht L, Lopes SC, Costa FT, et al.
    PLoS Negl Trop Dis, 2016 08;10(8):e0004912.
    PMID: 27509168 DOI: 10.1371/journal.pntd.0004912
    Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen.
  8. Diez Benavente E, Campos M, Phelan J, Nolder D, Dombrowski JG, Marinho CRF, et al.
    PLoS Genet, 2020 02;16(2):e1008576.
    PMID: 32053607 DOI: 10.1371/journal.pgen.1008576
    Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.
  9. Zhang R, Suwanarusk R, Malleret B, Cooke BM, Nosten F, Lau YL, et al.
    J Infect Dis, 2016 Jan 1;213(1):100-4.
    PMID: 26136472 DOI: 10.1093/infdis/jiv358
    Recent clinical trials revealed a surprisingly rapid clearance of red blood cells (RBCs) infected with malaria parasites by the spiroindolone KAE609. Here, we show that ring-stage parasite-infected RBCs exposed to KAE609 become spherical and rigid, probably through osmotic dysregulation consequent to the disruption of the parasite's sodium efflux pump (adenosine triphosphate 4). We also show that this peculiar drug effect is likely to cause accelerated splenic clearance of the rheologically impaired Plasmodium vivax- and Plasmodium falciparum-infected RBCs.
  10. Kosaisavee V, Suwanarusk R, Chua ACY, Kyle DE, Malleret B, Zhang R, et al.
    Blood, 2017 09 14;130(11):1357-1363.
    PMID: 28698207 DOI: 10.1182/blood-2017-02-764787
    Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.
  11. Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, et al.
    Elife, 2020 02 18;9.
    PMID: 32066522 DOI: 10.7554/eLife.51546
    In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.
  12. Auburn S, Benavente ED, Miotto O, Pearson RD, Amato R, Grigg MJ, et al.
    Nat Commun, 2018 Jul 03;9(1):2585.
    PMID: 29968722 DOI: 10.1038/s41467-018-04965-4
    The incidence of Plasmodium vivax infection has declined markedly in Malaysia over the past decade despite evidence of high-grade chloroquine resistance. Here we investigate the genetic changes in a P. vivax population approaching elimination in 51 isolates from Sabah, Malaysia and compare these with data from 104 isolates from Thailand and 104 isolates from Indonesia. Sabah displays extensive population structure, mirroring that previously seen with the emergence of artemisinin-resistant P. falciparum founder populations in Cambodia. Fifty-four percent of the Sabah isolates have identical genomes, consistent with a rapid clonal expansion. Across Sabah, there is a high prevalence of loci known to be associated with antimalarial drug resistance. Measures of differentiation between the three countries reveal several gene regions under putative selection in Sabah. Our findings highlight important factors pertinent to parasite resurgence and molecular cues that can be used to monitor low-endemic populations at the end stages of P. vivax elimination.
  13. Tay MZ, Tang W, Lee WC, Ong ASM, Novera W, Malleret B, et al.
    J Infect Dis, 2024 Mar 05.
    PMID: 38441336 DOI: 10.1093/infdis/jiae111
    We previously described a novel Plasmodium vivax invasion mechanism into human reticulocytes via the PvRBP2a-CD98 receptor-ligand pair. We assessed the PvRBP2a epitopes involved in CD98 binding and recognised by antibodies from infected patients using linear epitope mapping. We identified two epitope clusters mediating PvRBP2a-CD98 interaction. One cluster named cluster B (PvRBP2a431-448, TAALKEKGKLLANLYNKL) was the target of antibody responses in P. vivax-infected humans. Peptides from each cluster were able to prevent live parasite invasion of human reticulocytes. These results provide new insights for development of a malaria blood stage vaccine against P. vivax.
  14. Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, Yeom JS, et al.
    PLoS Negl Trop Dis, 2022 Jun;16(6):e0010492.
    PMID: 35737709 DOI: 10.1371/journal.pntd.0010492
    Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.
  15. Han JH, Cho JS, Ong JJY, Park JH, Nyunt MH, Sutanto E, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008202.
    PMID: 32645098 DOI: 10.1371/journal.pntd.0008202
    Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.
  16. Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, et al.
    J Infect Dis, 2019 Oct 22;220(11):1738-1749.
    PMID: 30668735 DOI: 10.1093/infdis/jiz016
    The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
  17. Commons RJ, Simpson JA, Thriemer K, Abreha T, Adam I, Anstey NM, et al.
    PLoS Med, 2019 Oct;16(10):e1002928.
    PMID: 31584960 DOI: 10.1371/journal.pmed.1002928
    BACKGROUND: Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax.

    METHODS AND FINDINGS: Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups.

    CONCLUSIONS: In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.

  18. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
  19. Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, et al.
    BMC Med, 2019 08 01;17(1):151.
    PMID: 31366382 DOI: 10.1186/s12916-019-1386-6
    BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.

    METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model.

    RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p  25% to  5 g/dL.

    CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.

    TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.

  20. Commons RJ, Simpson JA, Thriemer K, Humphreys GS, Abreha T, Alemu SG, et al.
    Lancet Infect Dis, 2018 Sep;18(9):1025-1034.
    PMID: 30033231 DOI: 10.1016/S1473-3099(18)30348-7
    BACKGROUND: Chloroquine remains the mainstay of treatment for Plasmodium vivax malaria despite increasing reports of treatment failure. We did a systematic review and meta-analysis to investigate the effect of chloroquine dose and the addition of primaquine on the risk of recurrent vivax malaria across different settings.

    METHODS: A systematic review done in MEDLINE, Web of Science, Embase, and Cochrane Database of Systematic Reviews identified P vivax clinical trials published between Jan 1, 2000, and March 22, 2017. Principal investigators were invited to share individual patient data, which were pooled using standardised methods. Cox regression analyses with random effects for study site were used to investigate the roles of chloroquine dose and primaquine use on rate of recurrence between day 7 and day 42 (primary outcome). The review protocol is registered in PROSPERO, number CRD42016053310.

    FINDINGS: Of 134 identified chloroquine studies, 37 studies (from 17 countries) and 5240 patients were included. 2990 patients were treated with chloroquine alone, of whom 1041 (34·8%) received a dose below the target 25 mg/kg. The risk of recurrence was 32·4% (95% CI 29·8-35·1) by day 42. After controlling for confounders, a 5 mg/kg higher chloroquine dose reduced the rate of recurrence overall (adjusted hazard ratio [AHR] 0·82, 95% CI 0·69-0·97; p=0·021) and in children younger than 5 years (0·59, 0·41-0·86; p=0·0058). Adding primaquine reduced the risk of recurrence to 4·9% (95% CI 3·1-7·7) by day 42, which is lower than with chloroquine alone (AHR 0·10, 0·05-0·17; p<0·0001).

    INTERPRETATION: Chloroquine is commonly under-dosed in the treatment of vivax malaria. Increasing the recommended dose to 30 mg/kg in children younger than 5 years could reduce substantially the risk of early recurrence when primaquine is not given. Radical cure with primaquine was highly effective in preventing early recurrence and may also improve blood schizontocidal efficacy against chloroquine-resistant P vivax.

    FUNDING: Wellcome Trust, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links