Displaying all 7 publications

Abstract:
Sort:
  1. Mohamed A-A, Eleuch H, Ooi CHR
    Sci Rep, 2019 Dec 23;9(1):19632.
    PMID: 31873086 DOI: 10.1038/s41598-019-55548-2
    We analytically investigate two separated qubits inside an open cavity field. The cavity is initially prepared in a superposition coherent state. The non-locality correlations [including trace norm measurement induced non-locality, maximal Bell-correlation, and concurrence entanglement] of the two qubits are explored. It is shown that, the generated non-locality correlations crucially depend on the decay and the initial coherence intensity of the cavity field. The enhancement of the initial coherence intensity and its superposition leads to increasing the generated non-locality correlations. The phenomena of sudden birth and death entanglement are found.
  2. Sizhuk AS, Dorfman K, Ooi CHR
    J Chem Phys, 2021 Jul 28;155(4):044105.
    PMID: 34340365 DOI: 10.1063/5.0054189
    Quantum optical theory of absorption properties of interacting atoms is developed. The concept of local absorptance is introduced as a derivative of the logarithm of intensity with respect to the distance in the vicinity of a given spatial point and a moment of time. The intensity is represented by the quantum and statistically averaged normal product of creation and annihilation operators of the electromagnetic field. The development of an analytical method of the estimation for the kinetic and optical parameters for the system is proposed here. The calculation method of the absorption coefficient includes thermal atomic motion, Doppler effect, and the short-range interaction between atoms. The absorption coefficient explicitly takes into account the quantum nature of the optical field. The ability of the system to absorb or emit quanta is quantitatively expressed through the special form of interaction integrals. The specific form of integrals results from the structure of the quantum brackets. The interplay between the collective (virtual photon exchange) and binary (optically induced inter-particle bonding) processes determines the system behavior. The spectral profile of the local absorption coefficient for different atomic densities and time intervals is simulated for realistic parameters.
  3. Ooi CHR, Chia KJC
    Sci Rep, 2022 Nov 21;12(1):20015.
    PMID: 36414663 DOI: 10.1038/s41598-022-22732-w
    We have developed a unified quantum optical master equation that includes the dissipative mechanisms of an impurity molecule in crystals. Our theory applies generally to polyatomic molecules where several vibrational modes give rise to intramolecular vibrational redistributions. The usual assumption on identical shapes of the nuclear potentials in ground and excited electronic states and the rotating wave approximation have been relaxed, i.e. the vibrational coordinates are different in the ground and excited states, with counter-rotating terms included for generality. Linear vibrational coupling to the lattice phonons accounts for dissipations via non-radiative transitions. The interaction of a molecule with photons includes Herzberg-Teller coupling as the first order non-Condon interaction where the transition dipole matrix elements depend linearly on vibrational coordinates. We obtain new cross terms as the result of mixing the terms from the zeroth-order (Condon) and first-order (non-Condon) approximations. The corresponding Lamb shifts for all Liouvilleans are derived explicitly including the contributions of counter-rotating terms. The computed absorption and emission spectra for carbon monoxide is in good agreement with experimental data. We use our unified model to obtain the spectra for nitrogen dioxide, demonstrating the capability of our theory to incorporate all typical dissipative relaxation and decoherence mechanisms for polyatomic molecules. The molecular quantum master equation is a promising theory for studying molecular quantum memory.
  4. Rouhi J, Mahmud S, Naderi N, Ooi ChR, Mahmood MR
    Nanoscale Res Lett, 2013;8(1):364.
    PMID: 23981366 DOI: 10.1186/1556-276X-8-364
    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems.
  5. Ooi CHR, Ho WL, Bandrauk AD
    Sci Rep, 2017 07 27;7(1):6739.
    PMID: 28751648 DOI: 10.1038/s41598-017-05915-8
    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.
  6. Saud SN, Hosseinian S R, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:687-694.
    PMID: 27524069 DOI: 10.1016/j.msec.2016.06.048
    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications.
  7. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links