Displaying all 4 publications

  1. Ooi LG, Liong MT
    Int J Mol Sci, 2010;11(6):2499-522.
    PMID: 20640165 DOI: 10.3390/ijms11062499
    Probiotics are live microorganisms that promote health benefits upon consumption, while prebiotics are nondigestible food ingredients that selectively stimulate the growth of beneficial microorganisms in the gastrointestinal tract. Probiotics and/or prebiotics could be used as alternative supplements to exert health benefits, including cholesterol-lowering effects on humans. Past in vivo studies showed that the administration of probiotics and/or prebiotics are effective in improving lipid profiles, including the reduction of serum/plasma total cholesterol, LDL-cholesterol and triglycerides or increment of HDL-cholesterol. However, other past studies have also shown that probiotics and prebiotics had insignificant effects on lipid profiles, disputing the hypocholesterolemic claim. Additionally, little information is available on the effective dosage of probiotics and prebiotics needed to exert hypocholesterolemic effects. Probiotics and prebiotics have been suggested to reduce cholesterol via various mechanisms. However, more clinical evidence is needed to strengthen these proposals. Safety issues regarding probiotics and/or prebiotics have also been raised despite their long history of safe use. Although probiotic-mediated infections are rare, several cases of systemic infections caused by probiotics have been reported and the issue of antibiotic resistance has sparked much debate. Prebiotics, classified as food ingredients, are generally considered safe, but overconsumption could cause intestinal discomfort. Conscientious prescription of probiotics and/or prebiotics is crucial, especially when administering to specific high risk groups such as infants, the elderly and the immuno-compromised.
  2. Ooi LG, Ahmad R, Yuen KH, Liong MT
    J Dairy Sci, 2010 Nov;93(11):5048-58.
    PMID: 20965319 DOI: 10.3168/jds.2010-3311
    This randomized, double-blind, placebo-controlled, and parallel-designed study was conducted to investigate the effect of a synbiotic product containing Lactobacillus gasseri [corrected] CHO-220 and inulin on lipid profiles of hypercholesterolemic men and women. Thirty-two hypercholesterolemic men and women with initial mean plasma cholesterol levels of 5.7±0.32 mmol/L were recruited for the 12-wk study. The subjects were randomly allocated to 2 groups; namely the treatment group (synbiotic product) and the control group (placebo), and each received 4 capsules of synbiotic or placebo daily. Our results showed that the mean body weight, energy, and nutrient intake of the subjects did not differ between the 2 groups over the study period. The supplementation of synbiotic reduced plasma total cholesterol and low-density lipoprotein (LDL)-cholesterol by 7.84 and 9.27%, respectively, compared with the control over 12 wk. Lipoproteins were subsequently subfractionated and characterized. The synbiotic supplementation resulted in a lower concentration of triglycerides in the very low, intermediate, low, and high-density lipoprotein particles compared with the control over 12 wk. The concentration of triglycerides in lipoproteins is positively correlated with an increased risk of atherosclerosis. Our results showed that the synbiotic might exhibit an atheropreventive characteristic. Cholesteryl ester (CE) in the high-density lipoprotein particles of the synbiotic group was also higher compared with the control, indicating greater transport of cholesterol in the form of CE to the liver for hydrolysis. This may have led to the reduced plasma total cholesterol level of the synbiotic group. The supplementation of synbiotic also reduced the concentration of CE in the LDL particles compared with the control, leading to the formation of smaller and denser particles that are more easily removed from blood. This supported the reduced LDL-cholesterol level of the synbiotic group compared with the control. Our present study showed that the synbiotic product improved plasma total- and LDL-cholesterol levels by modifying the interconnected pathways of lipid transporters. In addition, although Lactobacillus gasseri [corrected] CHO-220 could deconjugate bile, our results showed a statistically insignificant difference in the levels of conjugated, deconjugated, primary, and secondary bile acids between the synbiotic and control groups over 12 wk, indicating safety from bile-related toxicity.
  3. Ooi LG, Bhat R, Rosma A, Yuen KH, Liong MT
    J Dairy Sci, 2010 Oct;93(10):4535-44.
    PMID: 20854987 DOI: 10.3168/jds.2010-3330
    This randomized, double-blind, placebo-controlled, and parallel-design study was conducted to investigate the effect of a synbiotic product containing Lactobacillus gasseri [corrected] CHO-220 and inulin on the irregularity in shape of red blood cells (RBC) in hypercholesterolemic subjects. The subjects (n=32) were randomly allocated to 2 groups, a treatment group (synbiotic product) and a control group (placebo), and received 4 capsules of either synbiotic or placebo daily for 12 wk. Morphological representation via scanning electron microscopy showed that the occurrence of spur RBC was improved upon supplementation of the synbiotic. In addition, the supplementation of synbiotic reduced the cholesterol:phospholipids ratio of the RBC membrane by 47.02% over 12 wk, whereas the control showed insignificant changes. Our present study also showed that supplementation of the synbiotic reduced the concentration of saturated fatty acids (SFA), increased unsaturated fatty acids (UFA), and increased the ratio of UFA:SFA over 12 wk, whereas the control showed inconspicuous changes. The alteration of RBC membrane was assessed using fluorescence anisotropy (FAn) and fluorescence probes with different affinities for varying sections of the membrane phospholipid bilayer. A noticeable decrease in FAn of three fluorescent probes was observed in the synbiotic group compared with the control over 12 wk, indicative of increased membrane fluidity and reduced cholesterol enrichment in the RBC membrane.
  4. Yeo SK, Ooi LG, Lim TJ, Liong MT
    Int J Mol Sci, 2009 Oct;10(8):3517-30.
    PMID: 20111692 DOI: 10.3390/ijms10083517
    Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links