Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Daraghma SMA, Talebi S, Periasamy V
    Eur Phys J E Soft Matter, 2020 Jun 19;43(6):40.
    PMID: 32557121 DOI: 10.1140/epje/i2020-11965-8
    Understanding the charge transfer mechanism through deoxyribonucleic acid (DNA) molecules remains a challenge for numerous theoretical and experimental studies in order to be utilized in nanoelectronic devices. Various methods have attempted to investigate the conductivity of double-stranded (ds-) and single-stranded DNA (ssDNA) molecules. However, different electronic behaviors of these molecules are not clearly understood due to the complexity and lack of accuracy of the methods applied in these studies. In this work however, we demonstrated an electronic method to study the electrical behavior of synthetic ssDNA or dsDNA integrated within printed circuit board (PCB)-based metal (gold)-semiconductor (DNA) Schottky junctions. The results obtained in this work are in agreement with other studies reporting dsDNA as having higher conductivity than ssDNA as observed by us in the range of 4-6μA for the former and 2-3μA for the latter at an applied bias of 3V. Selected solid-state parameters such as turn-on voltage, series resistance, shunt resistance, ideality factor, and saturation current were also calculated for the specifically designed ss- and dsDNA sequences using the thermionic emission model. The results also showed that the highest conductance was observed for dsDNA with guanine and cytosine base pairs, while the lowest conductance was for ssDNA with adenine and thymine bases. We believe the results of this preliminary work involving the gold-DNA Schottky junction may allow the interrogation of DNA charge transfer mechanisms and contribute to better understanding its elusive electronic properties.
  2. Banihashemian SM, Periasamy V, Boon Tong G, Abdul Rahman S
    PLoS One, 2016;11(3):e0149488.
    PMID: 26999445 DOI: 10.1371/journal.pone.0149488
    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.
  3. Al-Ta'ii HM, Periasamy V, Amin YM
    PLoS One, 2016;11(1):e0145423.
    PMID: 26799703 DOI: 10.1371/journal.pone.0145423
    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor.
  4. Al-Ta'ii HM, Periasamy V, Amin YM
    Sensors (Basel), 2015;15(5):11836-53.
    PMID: 26007733 DOI: 10.3390/s150511836
    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
  5. Al-Ta'ii HM, Mohd Amin Y, Periasamy V
    Sensors (Basel), 2015 Feb 26;15(3):4810-22.
    PMID: 25730484 DOI: 10.3390/s150304810
    Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al)/DNA/silicon (Si) rectifying junctions using their current-voltage (I-V) characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0) was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889-1.423 Ω for 2-8 min). These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors.
  6. Al-Ta'ii HM, Amin YM, Periasamy V
    Sci Rep, 2016 May 10;6:25519.
    PMID: 27160654 DOI: 10.1038/srep25519
    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.
  7. Banihashemian SM, Periasamy V, Mohammadi SM, Ritikos R, Rahman SA
    Molecules, 2013 Sep 25;18(10):11797-808.
    PMID: 24071986 DOI: 10.3390/molecules181011797
    UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA) and cytosine-guanine 100 mer (CG-100 DNA) indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.
  8. Khatir NM, Banihashemian SM, Periasamy V, Majid WH, Rahman SA, Shahhosseini F
    Sensors (Basel), 2011;11(7):6719-27.
    PMID: 22163981 DOI: 10.3390/s110706719
    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.
  9. Raman J, Lakshmanan H, John PA, Zhijian C, Periasamy V, David P, et al.
    Int J Nanomedicine, 2015;10:5853-63.
    PMID: 26425086 DOI: 10.2147/IJN.S88371
    Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells.
  10. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
  11. Ciniciato GP, Ng FL, Phang SM, Jaafar MM, Fisher AC, Yunus K, et al.
    Sci Rep, 2016 08 09;6:31193.
    PMID: 27502051 DOI: 10.1038/srep31193
    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.
  12. Periasamy V, Elumalai PNN, Talebi S, Subramaniam RT, Kasi R, Iwamoto M, et al.
    RSC Adv, 2023 Feb 14;13(9):5744-5752.
    PMID: 36816072 DOI: 10.1039/d3ra00457k
    Conventional three-electrode systems used in electrochemical measurement demand time-consuming and maintenance intensive procedures to enable accurate and repeatable electrochemical measurements. Traditionally, different metal configurations are used to establish the electrochemical gradient required to acquire the redox activity, and vary between different electrochemical measurement platforms. However, in this work, we report using the same metal (gold) for the counter, working and reference electrodes fabricated on a miniaturized printed circuit board (PCB) for a much simpler design. Potassium ferricyanide, widely used as a redox probe for electrochemical characterization, was utilized to acquire cyclic voltametric profiles using both the printed circuit board-based gold-gold-gold three-electrode and conventional three-electrode systems (glassy carbon electrode or graphite foil as the working electrode, platinum wire as the counter electrode, and Ag/AgCl as the reference electrode). The results show that both types of electrode systems generated similar cyclic voltammograms within the same potential window (-0.5 to +0.7 V). However, the novel PCB-based same-metal three-electrode electrochemical cell only required a few activation cycles and exhibited impressive cyclic voltametric repeatability with higher redox sensitivity and detection window, while using only trace amounts of solutions/analytes.
  13. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC
    PLoS One, 2014;9(5):e97643.
    PMID: 24874081 DOI: 10.1371/journal.pone.0097643
    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.
  14. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC
    Sci Rep, 2017 Nov 24;7(1):16237.
    PMID: 29176639 DOI: 10.1038/s41598-017-16530-y
    We report for the first time a photosynthetically active algae immobilized in alginate gel within a fuel cell design for generation of bioelectricity. The algal-alginate biofilm was utilized within a biophotovoltaics (BPV) device developed for direct bioelectricity generation from photosynthesis. A peak power output of 0.289 mWm-2 with an increase of 18% in power output compared to conventional suspension culture BPV device was observed. The increase in maximum power density was correlated to the maximum relative electron transport rate (rETRm). The semi-dry type of photosynthetically active biofilm proposed in this work may offer significantly improved performances in terms of fuel cell design, bioelectricity generation, oxygen production and CO2 reduction.
  15. Talebi S, Daraghma SMA, Subramaniam RT, Bhassu S, Gnana Kumar G, Periasamy V
    ACS Omega, 2020 Apr 14;5(14):7802-7808.
    PMID: 32309689 DOI: 10.1021/acsomega.9b03831
    Proteins have been increasingly suggested as suitable candidates for the fabrication of biological computers and other biomolecular-based electronic devices mainly due to their interesting structure-related intrinsic electrical properties. These natural biopolymers are environmentally friendly substitutes for conventional inorganic materials and find numerous applications in bioelectronics. Effective manipulation of protein biomolecules allows for accurate fabrication of nanoscaled device dimensions for miniaturized electronics. The prerequisite, however, demands an interrogation of its various electronic properties prior to understanding the complex charge transfer mechanisms in protein molecules, the knowledge of which will be crucial toward development of such nanodevices. One significantly preferred method in recent times involves the utilization of solid-state sensors where interactions of proteins could be investigated upon contact with metals such as gold. Therefore, in this work, proteins (hemoglobin and collagen) were integrated within a two-electrode system, and the resulting electronic profiles were investigated. Interestingly, structure-related electronic profiles representing semiconductive-like behaviors were observed. These characteristic electronic profiles arise from the metal (Au)-semiconductor (protein) junction, clearly demonstrating the formation of a Schottky junction. Further interpretation of the electronic behavior of proteins was done by the calculation of selected solid-state parameters. For example, the turn-on voltage of hemoglobin was measured to occur at a lower turn-on voltage, indicating the possible influence of the hem group present as a cofactor in each subunit of this tetrameric protein.
  16. Khatir NM, Banihashemian SM, Periasamy V, Ritikos R, Majid WHA, Rahman SA
    Sensors (Basel), 2012;12(3):3578-3586.
    PMID: 22737025 DOI: 10.3390/s120303578
    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.
  17. Ng FL, Jaafar MM, Phang SM, Chan Z, Salleh NA, Azmi SZ, et al.
    Sci Rep, 2014;4:7562.
    PMID: 25531093 DOI: 10.1038/srep07562
    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.
  18. Karthikeyan C, Jenita Rani G, Ng FL, Periasamy V, Pappathi M, Jothi Rajan M, et al.
    Appl Biochem Biotechnol, 2020 Nov;192(3):751-769.
    PMID: 32557232 DOI: 10.1007/s12010-020-03352-4
    A facile chemical reduction approach is adopted for the synthesis of iron tungstate (FeWO4)/ceria (CeO2)-decorated reduced graphene oxide (rGO) nanocomposite. Surface morphological studies of rGO/FeWO4/CeO2 composite reveal the formation of hierarchical FeWO4 flower-like microstructures on rGO sheets, in which the CeO2 nanoparticles are decorated over the FeWO4 microstructures. The distinct anodic peaks observed for the cyclic voltammograms of studied electrodes under light/dark regimes validate the electroactive proteins present in the microalgae. With the cumulative endeavors of three-dimensional FeWO4 microstructures, phase effect between rGO sheet and FeWO4/CeO2, highly exposed surface area, and light harvesting property of CeO2 nanoparticles, the relevant rGO/FeWO4/CeO2 nanocomposite demonstrates high power and stable biophotovoltaic energy generation compared with those of previous reports. Thus, these findings construct a distinct horizon to tailor a ternary nanocomposite with high electrochemical activity for the construction of cost-efficient and environmentally benign fuel cells.
  19. Ng FL, Phang SM, Lan BL, Kalavally V, Thong CH, Chong KT, et al.
    Sci Rep, 2020 09 30;10(1):16105.
    PMID: 32999346 DOI: 10.1038/s41598-020-72823-9
    The biophotovoltaic cell (BPV) is deemed to be a potent green energy device as it demonstrates the generation of renewable energy from microalgae; however, inadequate electron generation from microalgae is a significant impediment for functional employment of these cells. The photosynthetic process is not only affected by the temperature, CO2 concentration and light intensity but also the spectrum of light. Thus, a detailed understanding of the influences of light spectrum is essential. Accordingly, we developed spectrally optimized light using programmable LED arrays (PLA)s to study the effect on algae growth and bioelectricity generation. Chlorella is a green microalga and contains chlorophyll-a (chl-a), which is the major light harvesting pigment that absorbs light in the blue and red spectrum. In this study, Chlorella is grown under a PLA which can optimally simulate the absorption spectrum of the pigments in Chlorella. This experiment investigated the growth, photosynthetic performance and bioelectricity generation of Chlorella when exposed to an optimally-tuned light spectrum. The algal BPV performed better under PLA with a peak power output of 0.581 mW m-2 for immobilized BPV device on day 8, which is an increase of 188% compared to operation under a conventional white LED light source. The photosynthetic performance, as measured using pulse amplitude modulation (PAM) fluorometry, showed that the optimized spectrum from the PLA gave an increase of 72% in the rETRmax value (190.5 μmol electrons m-2 s-1), compared with the conventional white light source. Highest algal biomass (1100 mg L-1) was achieved in the immobilized system on day eight, which translates to a carbon fixation of 550 mg carbon L-1. When artificial light is used for the BPV system, it should be optimized with the light spectrum and intensity best suited to the absorption capability of the pigments in the cells. Optimum artificial light source with algal BPV device can be integrated into a power management system for low power application (eg. environment sensor for indoor agriculture system).
  20. Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, et al.
    Sci Rep, 2018 Apr 12;8(1):6009.
    PMID: 29651139 DOI: 10.1038/s41598-018-24116-5
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links