Displaying all 14 publications

Abstract:
Sort:
  1. Li Z, Ying Lee Y, Wang Y, Qiu C
    Food Chem, 2023 Nov 30;427:136696.
    PMID: 37392626 DOI: 10.1016/j.foodchem.2023.136696
    Diacylglycerols (DAG) of varying chain lengths were synthesized and the acyl migrated samples with different 1,3-DAG/1,2-DAG ratios were obtained. The crystallization profile and surface adsorption differed depending on DAG structure. C12 and C14 DAGs formed small platelet- and needle-like crystals at the oil-air interface which can better reduce surface tension and pack in an ordered lamellar structure in oil. The acyl migrated DAGs with higher ratios of 1,2-DAG showed reduced crystal size and lower oil-air interfacial activity. C14 and C12 DAG oleogels exhibited higher elasticity and whipping ability with crystal shells surrounding bubbles, whereas C16 and C18 DAG oleogels had low elasticity and limited whipping ability due to the formation of aggregated needle-like crystals and loose gel network. Thus, acyl chain length dramatically influences the gelation and foaming behaviors of DAGs whereas the isomers exert little influence. This study provides basis for applying DAG of different structures in food products.
  2. Qiu C, Liu Y, Chen C, Lee YY, Wang Y
    Foods, 2023 Dec 10;12(24).
    PMID: 38137235 DOI: 10.3390/foods12244431
    Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.
  3. Lei M, Zhang N, Lee WJ, Tan CP, Lai OM, Wang Y, et al.
    Food Chem, 2020 May 15;312:126047.
    PMID: 31884300 DOI: 10.1016/j.foodchem.2019.126047
    Formation of foams is critical for tailoring the texture and mouthfeel of fat-based products. Diacylglycerol (DAG) is regarded as a preferable alternative structurant to hydrogenated lipid. Effect of DAG concentration (2-10 wt%) on the characteristics of oleogels and foams including crystal polymorphisms, size and distribution, rheological and thermodynamic properties was investigated. Oleogel prepared with 10 wt% DAG had comparable whipping and foaming stability to that of 6 wt% fully hydrogenated palm oil (FHPO). DAG formed small plate-crystals which tend to occur at the bubble surface, whereas FHPO showed needle-like crystals that were formed mainly in the continuous phase. For the 2 wt% FHPO-8 wt% DAG-based oil foams, interfacial templating crystallization effect contributed to the smaller bubble size and improved rheological properties whereby less oil drainage and foam breakdown occurred. Hence, the non-aqueous foam formed by DAG has broad application prospect because of the thermoresponsive properties and the desirable health benefits.
  4. Yang J, Qiu C, Li G, Lee WJ, Tan CP, Lai OM, et al.
    Food Chem, 2020 Oct 15;327:127014.
    PMID: 32434126 DOI: 10.1016/j.foodchem.2020.127014
    The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.
  5. Li G, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Funct, 2021 Nov 29;12(23):11732-11746.
    PMID: 34698749 DOI: 10.1039/d1fo01883c
    Pickering water-in-oil (W/O) emulsions were fabricated by using medium-long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (SLNs) and the connection between the characteristics of the SLNs and the colloidal stability of the emulsions was established. Via melt-emulsification and ultrasonication, MLCD-based SLNs with particle sizes of 120-300 nm were obtained with or without other surfactants. The particle size of the SLNs was influenced by the chemical properties of the surfactants, and surfactants decreased the contact angle of SLNs at the oil-water interface. Gelation was observed in SLNs modified by sodium stearoyl lactylate and lecithin, whereas the addition of Tween 20 resulted in a homogeneous SLN solution. The adsorption of surfactants onto SLN surfaces caused the production of higher amounts of α crystals accompanied by delayed crystallization onset which contributed to the reduction of particle size, interfacial tension and oil wetting ability. The W/O emulsions with higher rigidity and physical stability can be obtained by varying surfactant types and by increasing SLN mass ratios to 60%, whereby more SLNs are adsorbed at the droplet surface as a Pickering stabilizer. This study provides useful insights for the development of diacylglycerol-based SLNs and Pickering W/O emulsions which have great potential for food, cosmetic and pharmaceutical applications.
  6. Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Chem, 2022 Mar 15;372:131305.
    PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305
    High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
  7. Yu Y, Chen D, Lee YY, Chen N, Wang Y, Qiu C
    Foods, 2023 May 18;12(10).
    PMID: 37238863 DOI: 10.3390/foods12102045
    Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.
  8. Li G, Li J, Lee YY, Qiu C, Zeng X, Wang Y
    Int J Biol Macromol, 2024 Jan;255:128086.
    PMID: 37981278 DOI: 10.1016/j.ijbiomac.2023.128086
    Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 μM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.
  9. Qiu C, Zhang Z, Li X, Sang S, McClements DJ, Chen L, et al.
    NPJ Sci Food, 2023 Jun 14;7(1):29.
    PMID: 37316567 DOI: 10.1038/s41538-023-00186-2
    In this study, composite nanoparticles consisting of zein and hydroxypropyl beta-cyclodextrin were prepared using a combined antisolvent co-precipitation/electrostatic interaction method. The effects of calcium ion concentration on the stability of the composite nanoparticles containing both curcumin and quercetin were investigated. Moreover, the stability and bioactivity of the quercetin and curcumin were characterized before and after encapsulation. Fluorescence spectroscopy, Fourier Transform infrared spectroscopy, and X-ray diffraction analyses indicated that electrostatic interactions, hydrogen bonding, and hydrophobic interactions were the main driving forces for the formation of the composite nanoparticles. The addition of calcium ions promoted crosslinking of the proteins and affected the stability of the protein-cyclodextrin composite particles through electrostatic screening and binding effects. The addition of calcium ions to the composite particles improved the encapsulation efficiency, antioxidant activity, and stability of the curcumin and quercetin. However, there was an optimum calcium ion concentration (2.0 mM) that provided the best encapsulation and protective effects on the nutraceuticals. The calcium crosslinked composite particles were shown to maintain good stability under different pH and simulated gastrointestinal digestion conditions. These results suggest that zein-cyclodextrin composite nanoparticles may be useful plant-based colloidal delivery systems for hydrophobic bio-active agents.
  10. Niu J, Shang M, Li X, Sang S, Chen L, Long J, et al.
    PMID: 37665600 DOI: 10.1080/10408398.2023.2253542
    Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food. In this review, we summarized the health benefits of TPs. In order to better use TPs in food, we analyzed the form and mechanism of interaction between TPs and main food components, such as polysaccharides and proteins. Moreover, we reviewed research into optimizing the applications of TPs in food by bio-based delivery systems, such as liposomes, nanoemulsions, and nanoparticles, so as to improve the stability and bioactivity of TPs in food application. As an effective active ingredient, TPs have great potential to be applied in functional food to produce benefits for human health.
  11. Her AY, Shin ES, Bang LH, Nuruddin AA, Tang Q, Hsieh IC, et al.
    Cardiol J, 2021;28(1):136-149.
    PMID: 31565793 DOI: 10.5603/CJ.a2019.0093
    Coronary artery disease (CAD) is currently the leading cause of death globally, and the prevalence of this disease is growing more rapidly in the Asia-Pacific region than in Western countries. Although the use of metal coronary stents has rapidly increased thanks to the advancement of safety and efficacy of newer generation drug eluting stent (DES), patients are still negatively affected by some the inherent limitations of this type of treatment, such as stent thrombosis or restenosis, including neoatherosclerosis, and the obligatory use of dual antiplatelet therapy (DAPT) with unknown optimal duration. Drug-coated balloon (DCB) treatment is based on a leave-nothing-behind concept and therefore it is not limited by stent thrombosis and long-term DAPT; it directly delivers an anti-proliferative drug which is coated on a balloon after improving coronary blood flow. At present, DCB treatment is recommended as the first-line treatment option in metal stent-related restenosis linked to DES and bare metal stent. For de novo coronary lesions, the application of DCB treatment is extended further, for conditions such as small vessel disease, bifurcation lesions, and chronic total occlusion lesions, and others. Recently, several reports have suggested that fractional flow reserve guided DCB application was safe for larger coronary artery lesions and showed good long-term outcomes. Therefore, the aim of these recommendations of the consensus group was to provide adequate guidelines for patients with CAD based on objective evidence, and to extend the application of DCB to a wider variety of coronary diseases and guide their most effective and correct use in actual clinical practice.
  12. Zhang Z, Hu Y, Ji H, Lin Q, Li X, Sang S, et al.
    Food Chem, 2023 Jul 30;415:135736.
    PMID: 36863232 DOI: 10.1016/j.foodchem.2023.135736
    Core-shell biopolymer nanoparticles are assembled from a hydrophobic protein (zein) core and a hydrophilic polysaccharide (carboxymethyl dextrin) shell. The nanoparticles were shown to have good stability and the ability to protect quercetin from chemical degradation under long-term storage, pasteurization, and UV irradiation. Spectroscopy analysis shows that electrostatic, hydrogen bonding, and hydrophobic interactions are the main driving forces for the formation of composite nanoparticles. Quercetin coated with nanoparticles significantly enhanced its antioxidant and antibacterial activities and showed good stability and slow release in vitro during simulated gastrointestinal digestion. Furthermore, the encapsulation efficiency of carboxymethyl dextrin-coated zein nanoparticles (81.2%) for quercetin was significantly improved compared with that of zein nanoparticles alone (58.4%). These results indicate that carboxymethyl dextrin-coated zein nanoparticles can significantly improve the bioavailability of hydrophobic nutrient molecules such as quercetin and provide a valuable reference for their application in the field of biological delivery of energy drinks and food.
  13. Yin W, Yan R, Zhou X, Li X, Sang S, Julian McClements D, et al.
    Food Chem, 2023 Mar 24;419:136004.
    PMID: 37054511 DOI: 10.1016/j.foodchem.2023.136004
    Chitosan (CS) films have poor mechanical property, low water-resistance and limited antimicrobial activity, which hinder their application in food preservation industry. Cinnamaldehyde-tannic acid-zinc acetate nanoparticles (CTZA NPs) assembled from edible medicinal plant extracts were successfully incorporated into CS films to solve these issues. The tensile strength and water contact angle of the composite films increased about 5.25-fold and 17.55°. The addition of CTZA NPs reduced the water sensitivity of CS films, which could undergo appreciable stretching in water without breaking. Furthermore, CTZA NPs significantly enhanced the UV adsorption, antibacterial, and antioxidant properties of the films, while reduced their water vapor permeability. Moreover, it was possible to print inks onto the films because the presence of the hydrophobic CTZA NPs facilitated the deposition of carbon powder onto their surfaces. The films with great antibacterial and antioxidant activities can be applied for food packaging application.
  14. Anstey KJ, Peters R, Zheng L, Barnes DE, Brayne C, Brodaty H, et al.
    J Alzheimers Dis, 2020;78(1):3-12.
    PMID: 32925063 DOI: 10.3233/JAD-200674
    In the past decade a large body of evidence has accumulated on risk factors for dementia, primarily from Europe and North America. Drawing on recent integrative reviews and a consensus workshop, the International Research Network on Dementia Prevention developed a consensus statement on priorities for future research. Significant gaps in geographical location, representativeness, diversity, duration, mechanisms, and research on combinations of risk factors were identified. Future research to inform dementia risk reduction should fill gaps in the evidence base, take a life-course, multi-domain approach, and inform population health approaches that improve the brain-health of whole communities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links