Displaying all 4 publications

Abstract:
Sort:
  1. Mariana A, Santhana Raj AS, Tan SN, Ho TM
    Trop Biomed, 2007 Dec;24(2):29-37.
    PMID: 18209705
    Many finer taxonomic characters of Blomia tropicalis are not distinctly visible under conventional light microscopy. Scanning electron micrographs of this mite are therefore presented in this paper for better appreciation of the inconspicuous features of the morphology of the species. The differences in morphology of male and female B. tropicalis are also briefly discussed.
  2. Mariana A, Santana Raj AS, Ho TM, Tan SN, Zuhaizam H
    Trop Biomed, 2008 Dec;25(3):217-24.
    PMID: 19287360
    Scanning electron microscope (SEM) images of two dust mites, Sturnophagoides brasiliensis and Sturnophagoides halterophilus, are presented to provide an improved visualization of the taxonomic characters of these mites. Sturnophagoides halterophilus can be differentiated from S. brasiliensis by their expanded genu and femur of leg I. The differences in morphology of male and female S. brasiliensis are also discussed.
  3. Alqasaimeh M, Heng LY, Ahmad M, Raj AS, Ling TL
    Sensors (Basel), 2014 Jul 22;14(7):13186-209.
    PMID: 25054632 DOI: 10.3390/s140713186
    A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol-gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50-500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors.
  4. Yahya SK, Zakaria ZA, Samin J, Raj AS, Ahmad WA
    Colloids Surf B Biointerfaces, 2012 Jun 1;94:362-8.
    PMID: 22398363 DOI: 10.1016/j.colsurfb.2012.02.016
    The potential use of non-viable biomass of a Gram negative bacterium i.e. Acinetobacter haemolyticus to remove Cr(III) species from aqueous environment was investigated. Highest Cr(III) removal of 198.80 mg g(-1) was obtained at pH 5, biomass dosage of 15 mg cell dry weight, initial Cr(III) of 100 mg L(-1) and 30 min of contact time. The Langmuir and Freundlich models fit the experimental data (R(2)>0.95) while the kinetic data was best described using the pseudo second-order kinetic model (R(2)>0.99). Cr(III) was successfully recovered from the bacterial biomass using either 1M of CH(3)COOH, HNO(3) or H(2)SO(4) with 90% recovery. TEM and FTIR suggested the involvement of amine, carboxyl, hydroxyl and phosphate groups during the biosorption of Cr(III) onto the cell surface of A. haemolyticus. A. haemolyticus was also capable to remove 79.87 mg g(-1) Cr(III) (around 22.75%) from raw leather tanning wastewater. This study demonstrates the potential of using A. haemolyticus as biosorbent to remove Cr(III) from both synthetic and industrial wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links