Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Ramakrishna S, Jose R
    Sci Total Environ, 2022 Feb 01;806(Pt 3):151208.
    PMID: 34715226 DOI: 10.1016/j.scitotenv.2021.151208
    Widespread industrialization, rapid urbanization, and massive transport through land, waters, and air have led to catastrophes such as climate change, water pollution, resource limitation, and pandemics causing severe economic consequences, massive influences on the natural environment and pose a great threat to the life sustainability. Sustainability topic has a long history, and many policies and initiatives are in effect for a sustainable planet Earth, still gaps of varying degrees exist in almost all sectors. This article addresses the essentiality of minimising the sustainability gaps exist in diverse realms of life and citing few examples. Creating a cyclic path for production-consumption process in the economic sector through promoting circular economy, learning from the natural processes through appropriate biomimicking, and knowledge-integration from diverse disciplines and emphasizing sustainability in the educational sector are shown to lower the sustainability gaps.
  2. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
  3. Ramakrishna S, Hu W, Jose R
    Circ Econ Sustain, 2022 Aug 06.
    PMID: 35966038 DOI: 10.1007/s43615-022-00201-w
    For a successful delivery of the United Nations Sustainable Development Goals (UNSDGs) and to track the progress of UNSDGs as well as identify the gaps and the areas requiring more attention, periodic analyses on the "research on sustainability" by various countries and their contribution to the topic are inevitable. This paper tracks the trends in sustainability research including the geographical distribution on sustainability research, their level of multi-disciplinarity and the cross-border collaboration, their distribution of funding with respect to the UNSDGs, and the lifecycle analyses. Cumulative publications and patents on sustainability could be fitted to an exponential function, thereby highlighting the importance of the research on sustainability in the recent past. Besides, this analytics quantifies cross-border collaborations and knowledge integration to solve critical issues as well as traditional and emerging sources to undertake sustainability research. As an important aspect of resource sustainability and circular economy, trends in publication and funding on lifecycle assessment have also been investigated. The analytics present here identify that major sustainability research volume is from the social sciences as well as business and economics sectors, whereas contributions from the engineering disciplines to develop technologies for sustainability practices are relatively lower. Similarly, funding distribution is also not evenly distributed under various SDGs; the larger share of funding has been on energy security and climate change research. Thus, this study identifies many gaps to be filled for the UNSDGs to be successful.
  4. Esfahani H, Jose R, Ramakrishna S
    Materials (Basel), 2017 Oct 27;10(11).
    PMID: 29077074 DOI: 10.3390/ma10111238
    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.
  5. Sarraf M, Rezvani Ghomi E, Alipour S, Ramakrishna S, Liana Sukiman N
    Biodes Manuf, 2021 Oct 26.
    PMID: 34721937 DOI: 10.1007/s42242-021-00170-3
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials.

    Graphic abstract:

  6. Abazari S, Shamsipur A, Bakhsheshi-Rad HR, Ismail AF, Sharif S, Razzaghi M, et al.
    Materials (Basel), 2020 Oct 04;13(19).
    PMID: 33020427 DOI: 10.3390/ma13194421
    In recent years considerable attention has been attracted to magnesium because of its light weight, high specific strength, and ease of recycling. Because of the growing demand for lightweight materials in aerospace, medical and automotive industries, magnesium-based metal matrix nanocomposites (MMNCs) reinforced with ceramic nanometer-sized particles, graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) were developed. CNTs have excellent material characteristics like low density, high tensile strength, high ratio of surface-to-volume, and high thermal conductivity that makes them attractive to use as reinforcements to fabricate high-performance, and high-strength metal-matrix composites (MMCs). Reinforcing magnesium (Mg) using small amounts of CNTs can improve the mechanical and physical properties in the fabricated lightweight and high-performance nanocomposite. Nevertheless, the incorporation of CNTs into a Mg-based matrix faces some challenges, and a uniform distribution is dependent on the parameters of the fabricating process. The characteristics of a CNTs reinforced composite are related to the uniform distribution, weight percent, and length of the CNTs, as well as the interfacial bonding and alignment between CNTs reinforcement and the Mg-based matrix. In this review article, the recent findings in the fabricating methods, characterization of the composite's properties, and application of Mg-based composites reinforced with CNTs are studied. These include the strategies of fabricating CNT-reinforced Mg-based composites, mechanical responses, and corrosion behaviors. The present review aims to investigate and conclude the most relevant studies conducted in the field of Mg/CNTs composites. Strategies to conquer complicated challenges are suggested and potential fields of Mg/CNTs composites as upcoming structural material regarding functional requirements in aerospace, medical and automotive industries are particularly presented.
  7. Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang WH, Lai CW, et al.
    Drug Metab Rev, 2020 05;52(2):299-318.
    PMID: 32150480 DOI: 10.1080/03602532.2020.1734021
    Gold Nanostars (GNS) have attracted tremendous attention toward themselves owing to their multi-branched structure and unique properties. These state of the art metallic nanoparticles possess intrinsic features like remarkable optical properties and exceptional physiochemical activities. These star-shaped gold nanoparticles can predominantly be utilized in biosensing, photothermal therapy, imaging, surface-enhanced Raman spectroscopy and target drug delivery applications due to their low toxicity and extraordinary optical features. In the current review, recent approaches in the matter of GNS in case of diagnosis, bioimaging and biomedical applications were summarized and reported. In this regard, first an overview about the structure and general properties of GNS were reported and thence detailed information regarding the diagnostic, bioimaging, photothermal therapy, and drug delivery applications of such novel nanomaterials were presented in detail. Summarized information clearly highlighting the superior capability of GNS as potential multi-functional materials for biomedical applications.
  8. Dasineh Khiavi N, Katal R, Kholghi Eshkalak S, Masudy-Panah S, Ramakrishna S, Jiangyong H
    Nanomaterials (Basel), 2019 Jul 13;9(7).
    PMID: 31337085 DOI: 10.3390/nano9071011
    A high recombination rate and low charge collection are the main limiting factors of copper oxides (cupric and cuprous oxide) for the photocatalytic degradation of organic pollutants. In this paper, a high performance copper oxide photocatalyst was developed by integrating cupric oxide (CuO) and cuprous oxide (Cu2O) thin films, which showed superior performance for the photocatalytic degradation of methylene blue (MB) compared to the control CuO and Cu2O photocatalyst. Our results show that a heterojunction photocatalyst of CuO-Cu2O thin films could significantly increase the charge collection, reduce the recombination rate, and improve the photocatalytic activity.
  9. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
  10. Singh R, Singh G, Singh J, Kumar R, Rahman MM, Ramakrishna S
    Proc Inst Mech Eng H, 2019 Nov;233(11):1196-1203.
    PMID: 31545132 DOI: 10.1177/0954411919877979
    In this experimental study, a composite of poly-ether-ketone-ketone by reinforcement of hydroxyapatite and chitosan has been prepared for possible applications as orthopaedic scaffolds. Initially, different weight percentages of hydroxyapatite and chitosan were reinforced in the poly-ether-ketone-ketone matrix and tested for melt flow index in order to check the flowability of different compositions/proportions. Suitable compositions revealed by the melt flow index test were then taken forward for the extrusion of filament required for fused deposition modelling. For thermomechanical investigations, Taguchi-based design of experiments has been used with input variables in the extrusion process as follows: temperature, load applied and different composition/proportions. The specimens in the form of feedstock filament produced by the extrusion process were made to undergo tensile testing. The specimens were also inspected by differential scanning calorimetry and photomicrographs. Finally, the specimen showing the best performance from the thermomechanical viewpoint has been selected to extrude the filament for the fused deposition modelling process.
  11. Navaneethan B, Vijayakumar GP, Ashang Luwang L, Karuppiah S, Jayarama Reddy V, Ramakrishna S, et al.
    ACS Appl Mater Interfaces, 2021 Mar 03;13(8):9691-9701.
    PMID: 33605136 DOI: 10.1021/acsami.0c22028
    Electrospinning is a promising technique for the fabrication of bioscaffolds in tissue engineering applications. Pertaining issues of multiple polymer jets and bending instabilities result in random paths which lend poor controllability over scaffolds morphology for affecting the porosity and mechanical stability. The present study alleviates these challenges by demonstrating a novel self-directing single jet taking a specifically patterned path to deposit fibers into circular and uniform scaffolds without tuning any externally controlled parameters. High-speed camera observation revealed that the charge retention and dissipation on the collected fibers caused rapid autojet switching between the two jetting modes, namely, a microcantilever-like armed jet motion and a whipping motion, which sequentially expand the area and thickness of the scaffolds, respectively, in a layered-like fashion. The physical properties showed that the self-switching dual-jet modes generated multilayered microfibrous scaffolds (MFSs) with dual morphologies and varied fiber packing density, thereby establishing the gradient porosity and mechanical strength (through buckled fibers) in the scaffolds. In vitro studies showed that as-spun scaffolds are cell-permeable hierarchical 3D microporous structures enabling lateral cell seeding into multiple layers. The cell proliferation on days 6 and 9 increased 21% and 38% correspondingly on MFSs than on nanofibrous scaffolds (NFSs) done by conventional multijets electrospinning. Remarkably, this novel and single-step process is highly reproducible and tunable for developing fibrous scaffolds for tissue engineering applications.
  12. Vigneswari S, Amelia TSM, Hazwan MH, Mouriya GK, Bhubalan K, Amirul AA, et al.
    Antibiotics (Basel), 2021 Feb 24;10(3).
    PMID: 33668352 DOI: 10.3390/antibiotics10030229
    Nanobiotechnology has undoubtedly influenced major breakthroughs in medical sciences. Application of nanosized materials has made it possible for researchers to investigate a broad spectrum of treatments for diseases with minimally invasive procedures. Silver nanoparticles (AgNPs) have been a subject of investigation for numerous applications in agriculture, water treatment, biosensors, textiles, and the food industry as well as in the medical field, mainly due to their antimicrobial properties and nanoparticle nature. In general, AgNPs are known for their superior physical, chemical, and biological properties. The properties of AgNPs differ based on their methods of synthesis and to date, the biological method has been preferred because it is rapid, nontoxic, and can produce well-defined size and morphology under optimized conditions. Nevertheless, the common issue concerning biological or biobased production is its sustainability. Researchers have employed various strategies in addressing this shortcoming, such as recently testing agricultural biowastes such as fruit peels for the synthesis of AgNPs. The use of biowastes is definitely cost-effective and eco-friendly; moreover, it has been reported that the reduction process is simple and rapid with reasonably high yield. This review aims to address the developments in using fruit- and vegetable-based biowastes for biologically producing AgNPs to be applied as antimicrobial coatings in biomedical applications.
  13. Vigneswari S, Chai JM, Kamarudin KH, Amirul AA, Focarete ML, Ramakrishna S
    Front Bioeng Biotechnol, 2020;8:567693.
    PMID: 33195129 DOI: 10.3389/fbioe.2020.567693
    Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
  14. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Rahsepar M, Bahrani S, et al.
    Polymers (Basel), 2020 Jun 23;12(6).
    PMID: 32585991 DOI: 10.3390/polym12061407
    X-ray radiation is a harmful carcinogenic electromagnetic source that can adversely affect the health of living species and deteriorate the DNA of cells, thus it's vital to protect vulnerable sources from them. To address this flaw, the conductive polymeric structure of polyaniline (PANi) was reinforced with diverse filler loadings (i.e., 25 wt % and 50 wt %) of hybrid graphene oxide-iron tungsten nitride (ITN) flakes toward attenuation of X-ray beams and inhabitation of microorganisms' growth. Primary characterizations confirmed the successful decoration of graphene oxide (GO) with interconnected and highly dense structure of iron tungsten nitride with a density of about 24.21 g.cm⁻3 and reinforcement of PANi with GO-ITN. Additionally, the outcome of evaluations showed the superior performance of developed shields, where a shield with 1.2 mm thickness containing 50 wt % GO-ITN showed 131.73 % increase in the electrical conductivity (compared with neat PANi) along with 78.07%, 57.12%, and 44.99% decrease in the amplitude of the total irradiated X-ray waves at 30, 40, and 60 kVp tube voltages, respectively, compared with control X-ray dosage. More importantly, the developed shields not only showed non-toxic nature and improved the viability of cells, but also completely removed the selected microorganisms at a concentration of 1000 µg.mL-1.
  15. Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K
    Environ Pollut, 2021 Feb 15;271:116311.
    PMID: 33383425 DOI: 10.1016/j.envpol.2020.116311
    Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
  16. Pahlevanzadeh F, Bakhsheshi-Rad HR, Kharaziha M, Kasiri-Asgarani M, Omidi M, Razzaghi M, et al.
    J Mech Behav Biomed Mater, 2021 04;116:104320.
    PMID: 33571842 DOI: 10.1016/j.jmbbm.2021.104320
    Polymethyl methacrylate (PMMA) bone cements (BCs) have some drawbacks, including limited bioactivity and bone formation, as well as inferior mechanical properties, which may result in failure of the BC. To deal with the mentioned issues, novel bioactive polymethyl methacrylate-hardystonite (PMMA-HT) bone cement (BC) reinforced with 0.25 and 0.5 wt% of carbon nanotube (CNT) and reduced graphene oxide (rGO) was synthesized. In this context, the obtained bone cements were evaluated in terms of their mechanical and biological characteristics. The rGO reinforced bone cement exhibited better mechanical properties to the extent that the addition of 0.5 wt% of rGO where its compressive and tensile strength of bioactive PMMA-HT/rGO cement escalated from 92.07 ± 0.72 MPa, and 40.02 ± 0.71 MPa to 187.48 ± 5.79 MPa and 64.92 ± 0.75 MPa, respectively. Besides, the mechanisms of toughening, apatite formation, and cell interaction in CNT and rGO encapsulated PMMA have been studied. Results showed that the existence of CNT and rGO in BCs led to increase of MG63 osteoblast viability, and proliferation. However, rGO reinforced bone cement was more successful in supporting MG63 cell attachment compared to the CNT counterpart due to its wrinkled surface, which made a suitable substrate for cell adhesion. Based on the results, PMMA-HT/rGO can be a proper bone cement for the fixation of load-bearing implants.
  17. Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, et al.
    Chem Soc Rev, 2017 Sep 29.
    PMID: 28959815 DOI: 10.1039/c6cs00921b
    The efficient handling of wastewater pollutants is a must, since they are continuously defiling limited fresh water resources, seriously affecting the terrestrial, aquatic, and aerial flora and fauna. Our vision is to undertake an exhaustive examination of current research trends with a focus on nanomaterials (NMs) to considerably improve the performance of classical wastewater treatment technologies, e.g. adsorption, catalysis, separation, and disinfection. Additionally, NM-based sensor technologies are considered, since they have been significantly used for monitoring water contaminants. We also suggest future directions to inform investigators of potentially disruptive NM technologies that have to be investigated in more detail. The fate and environmental transformations of NMs, which need to be addressed before large-scale implementation of NMs for water purification, are also highlighted.
  18. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, et al.
    Antioxidants (Basel), 2020 Dec 21;9(12).
    PMID: 33371338 DOI: 10.3390/antiox9121309
    Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.
  19. Ganeson K, Alias AH, Murugaiyah V, Amirul AA, Ramakrishna S, Vigneswari S
    Pharmaceutics, 2023 Feb 23;15(3).
    PMID: 36986606 DOI: 10.3390/pharmaceutics15030744
    Cancer is the leading cause of death, acting as a global burden, severely impacting the patients' quality of life and affecting the world economy despite the expansion of cumulative advances in oncology. The current conventional therapies for cancer which involve long treatment duration and systemic exposure of drugs leads to premature degradation of drugs, a massive amount of pain, side effects, as well as the recurrence of the condition. There is also an urgent demand for personalized and precision-based medicine, especially after the recent pandemic, to avoid future delays in diagnosis or treatments for cancer patients as they are very essential in reducing the global mortality rate. Recently, microneedles which consist of a patch with tiny, micron-sized needles attached to it have been quite a sensation as an emerging technology for transdermal application to diagnose or treat various illnesses. The application of microneedles in cancer therapies is also being extensively studied as they offer a myriad of benefits, especially since microneedle patches offer a better treatment approach through self administration, painless treatment, and being an economically and environmentally friendly approach in comparison with other conventional methods. The painless gains from microneedles significantly improves the survival rate of cancer patients. The emergence of versatile and innovative transdermal drug delivery systems presents a prime breakthrough opportunity for safer and more effective therapies, which could meet the demands of cancer diagnosis and treatment through different application scenarios. This review highlights the types of microneedles, fabrication methods and materials, along with the recent advances and opportunities. In addition, this review also addresses the challenges and limitations of microneedles in cancer therapy with solutions through current studies and future works to facilitate the clinical translation of microneedles in cancer therapies.
  20. Vigneswari S, Gurusamy TP, Khairul WM, H P S AK, Ramakrishna S, Amirul AA
    Polymers (Basel), 2021 Jul 26;13(15).
    PMID: 34372060 DOI: 10.3390/polym13152454
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a bacterial derived biopolymer widely known for its unique physical and mechanical properties to be used in biomedical application. In this study, antimicrobial agent silver sulfadiazine (SSD) coat/collagen peptide coat-P(3HB-co-4HB) (SCCC) and SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffolds (SBCC) were fabricated using a green salt leaching technique combined with freeze-drying. This was then followed by the incorporation of collagen peptides at various concentrations (2.5-12.5 wt.%) to P(3HB-co-4HB) using collagen-coating. As a result, two types of P(3HB-co-4HB) scaffolds were fabricated, including SCCC and SBCC scaffolds. The increasing concentrations of collagen peptides from 2.5 wt.% to 12.5 wt.% exhibited a decline in their porosity. The wettability and hydrophilicity increased as the concentration of collagen peptides in the scaffolds increased. In terms of the cytotoxic results, MTS assay demonstrated the L929 fibroblast scaffolds adhered well to the fabricated scaffolds. The 10 wt.% collagen peptides coated SCCC and SBCC scaffolds displayed highest cell proliferation rate. The antimicrobial analysis of the fabricated scaffolds exhibited 100% inhibition towards various pathogenic microorganisms. However, the SCCC scaffold exhibited 100% inhibition between 12 and 24 h, but the SBCC scaffolds with SSD impregnated in the scaffold had controlled release of the antimicrobial agent. Thus, this study will elucidate the surface interface-cell interactions of the SSD-P(3HB-co-4HB)-collagen peptide scaffolds and controlled release of SSD, antimicrobial agent.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links