Displaying publications 1 - 20 of 22 in total

  1. Saeedfar K, Heng LY, Ling TL, Rezayi M
    Sensors (Basel), 2013;13(12):16851-66.
    PMID: 24322561 DOI: 10.3390/s131216851
    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.
  2. Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Safari O
    Environ Sci Pollut Res Int, 2014 Jan;21(2):813-33.
    PMID: 24142490 DOI: 10.1007/s11356-013-2217-5
    The basic aim of this work is (1) to review and present practically operational requirements for a sustainability assessment of marine environment, such as describing the monitoring process, research approaches, objectives, guidelines, and indicators and (2) to illustrate how physico-chemical and biological indicators can be practically applied, to assess water and sediment quality in marine and coastal environment. These indicators should meet defined criteria for practical usefulness, e.g. they should be simple to understand and apply to managers and scientists with different educational backgrounds. This review aimed to encapsulate that variability, recognizing that meaningful guidance should be flexible enough to accommodate the widely differing characteristics of marine ecosystems.
  3. Ahmadzadeh S, Kassim A, Rezayi M, Rounaghi GH
    Molecules, 2011 Sep 22;16(9):8130-42.
    PMID: 21941227 DOI: 10.3390/molecules16098130
    The complexation reactions between the macrocyclic ionophore, p-isopropylcalix[6]arene and Cs+ cation were studied in dimethylsulfoxide-acetonitrile (DMSO-AN) binary non-aqueous solvents at different temperatures using a conductometry method. The conductance data show that the stoichiometry of the (p-isopropylcalix[6]-arene·Cs)+ complex in all binary mixed solvents is 1:1. The stability of the complexes is affected by the composition of the binary solvent media and a non-linear behavior was observed for changes of log K(f) of the complex versus the composition of the binary mixed solvents. The thermodynamic parameters (DH°(c) and DS°(c)) for formation of (p-isopropyl-calix[6]arene·Cs)+ complex were obtained from temperature dependence of the stability constant and the obtained results show that the (p-isopropylcalix[6]arene·Cs)+ complex is enthalpy destabilized, but entropy stabilized, and the values of the mentioned parameters are affected strongly by the nature and composition of the binary mixed solvents.
  4. Rezayi M, Farjami Z, Hosseini ZS, Ebrahimi N, Abouzari-Lotf E
    Curr Pharm Des, 2018;24(39):4675-4680.
    PMID: 30636591 DOI: 10.2174/1381612825666190111144525
    Small noncoding microRNAs (miRNAs) are known as noninvasive biomarkers for early detection in various cancers. In fact, miRNAs have key roles in carcinogenicity process such as proliferation, apoptosis and metastasis. After cardiovascular disease, cancer is the second cause of death in the world with an estimated 9.6 million deaths in 2018. So, early diagnosis of cancer is critical for successful treatment. To date, several selective and sensitive laboratory-based methods have been applied for the detection of circulating miRNA, but a simple, short assay time and low-cost method such as a biosensor method as an alternative approach to monitor cancer biomarker is required. In this review, we have highlighted recent advances in biosensors for circulating miRNA detection.
  5. Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, et al.
    Mar Pollut Bull, 2014 Jul 15;84(1-2):268-79.
    PMID: 24855978 DOI: 10.1016/j.marpolbul.2014.05.004
    The concentration of carcinogenic poly aromatic hydrocarbons (c-PAHs) present in water and sediment of Klang Strait as well as in the edible tissue of blood cockle (Anadara granosa) was investigated. The human health risk of c-PAHs was assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). The cancer risks of c-PAHs to human are expected to occur through the consumption of blood cockles or via gastrointestinal exposure to polluted sediments and water in Kalng Strait. The non-carcinogenic risks that are associated with multiple pathways based on ingestion rate and contact rates with water were higher than the US EPA safe level at almost all stations, but the non-carcinogenic risks for eating blood cockle was below the level of US EPA concern. A high correlation between concentrations of c-PAHs in different matrices showed that the bioaccumulation of c-PAHs by blood cockles could be regarded as a potential health hazard for the consumers.
  6. Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Mehdinia A, Safari O
    PLoS One, 2014;9(4):e94907.
    PMID: 24747349 DOI: 10.1371/journal.pone.0094907
    Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait.
  7. Rezayi M, Karazhian R, Abdollahi Y, Narimani L, Sany SB, Ahmadzadeh S, et al.
    Sci Rep, 2014;4:4664.
    PMID: 24722576 DOI: 10.1038/srep04664
    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10(-6)-1.0 × 10(-2) M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.
  8. Saadati N, Abdullah MP, Zakaria Z, Sany SB, Rezayi M, Hassonizadeh H
    Chem Cent J, 2013;7(1):63.
    PMID: 23561579 DOI: 10.1186/1752-153X-7-63
    Reliable values for method validity of organochlorine pesticides determination were investigated, in water by solid phase extraction and in sediment by Soxhlet extraction, followed by gas chromatography equipped with an electron capture detector. Organochlorine pesticides are categorized as Persistent Organic Pollutants. Hence, critical decisions to control exposure to these chemicals in the environment are based on their levels in different media; it is important to find valid qualitative and quantitative results for these components. In analytical chemistry, internal quality procedures are applied to produce valid logical results.
  9. Rezayi M, Heng LY, Kassim A, Ahmadzadeh S, Abdollahi Y, Jahangirian H
    Sensors (Basel), 2012;12(7):8806-14.
    PMID: 23012518
    Novel ionophores comprising various hydroxide and amine structures were immobilized onto poly(vinyl chloride) (PVC) matrices, and these were examined to determine Ti(III) selectivity. To predict the selectivity of Ti(III), a PVC membrane was used to investigate the binding of Ti(III) to c-methylcalix[4]resorcinarene (CMCR). The study showed that the chelating ligand, CMCR, was coordinated selectively to Ti(III) at eight coordination sites involving the oxygen atoms at the interface of the membrane/solution. The membrane was prepared, based on CMCR as an ionophore, sodium tetrakis(4-fluorophenyl) borate (NaTFPB) as a lipophilic ionic additive, and dioctylphthalate (DOP) as a plasticizer. The immobilization of the ionophore and surface characterization studies revealed that the performance of CMCR-immobilized PVC was equivalent to that of mobile ionophores in supported liquid membranes (SLMs). The strengths of the ion-ionophore (CMCR-Ti(OH)(OH(2))(5) (2+)) interactions and the role of ionophores on membranes were studied via UV-Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and and X-ray diffraction (XRD).
  10. Abdollahi Y, Zakaria A, Matori KA, Shameli K, Jahangirian H, Rezayi M, et al.
    Chem Cent J, 2012;6(1):100.
    PMID: 22967885 DOI: 10.1186/1752-153X-6-100
    The interactions of p-cresol photocatalytic degradation components were studied by response surface methodology. The study was designed by central composite design using the irradiation time, pH, the amount of photocatalyst and the p-cresol concentration as variables. The design was performed to obtain photodegradation % as actual responses. The actual responses were fitted with linear, two factor interactions, cubic and quadratic model to select an appropriate model. The selected model was validated by analysis of variance which provided evidences such as high F-value (845.09), very low P-value (
  11. Rezayi M, Heng LY, Kassim A, Ahmadzadeh S, Abdollahi Y, Jahangirian H
    Chem Cent J, 2012;6(1):40.
    PMID: 22564322 DOI: 10.1186/1752-153X-6-40
    Due to the increasing industrial use of titanium compounds, its determination is the subject of considerable efforts. The ionophore or membrane active recognition is the most important component of any polymeric membrane sensor. The sensor's response depends on the ionophore and bonding between the ionophore and the target ion. Ionophores with molecule-sized dimensions containing cavities or semi-cavities can surround the target ion. The bond between the ionophore and target ion gives different selectivity and sensitivity toward the other ions. Therefore, ionophores with different binding strengths can be used in the sensor.
  12. Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Karlen DJ, Razavizadeh BB, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19434-50.
    PMID: 26514567 DOI: 10.1007/s11356-015-5597-x
    Dioxin-like compounds (DLCs) have been classified by the World Health Organization (WHO) as one of the most persistent toxic chemical substances in the environment, and they are associated with several occupational activities and industrial accidents around the world. Since the end of the 1970s, these toxic chemicals have been banned because of their human toxicity potential, long half-life, wide dispersion, and they bioaccumulate in the food web. This review serves as a primer for environmental health professionals to provide guidance on short-term risk assessment of dioxin and to identify key findings for health and exposure assessment based on policies of different agencies. It also presents possible health effects of dioxins, mechanisms of action, toxic equivalency factors (TEFs), and dose-response characterization. Key studies related to toxicity values of dioxin-like compounds and their possible human health risk were identified through PubMed and supplemented with relevant studies characterized by reviewing the reference lists in the review articles and primary literature. Existing data decreases the scope of analyses and models in relevant studies to a manageable size by focusing on the set of important studies related to the perspective of developing toxicity values of DLCs.
  13. Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M
    Sensors (Basel), 2015;15(10):24681-97.
    PMID: 26404269 DOI: 10.3390/s151024681
    Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM(-1)), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
  14. Sany SB, Hashim R, Rezayi M, Rahman MA, Razavizadeh BB, Abouzari-lotf E, et al.
    Environ Sci Pollut Res Int, 2015 Aug;22(15):11193-208.
    PMID: 25953606 DOI: 10.1007/s11356-015-4511-x
    Current ecological risk assessment (ERA) schemes focus mainly on bioaccumulation and toxicity of pollutants in individual organisms. Ecological models are tools mainly used to assess ecological risks of pollutants to ecosystems, communities, and populations. Their main advantage is the relatively direct integration of the species sensitivity to organic pollutants, the fate and mechanism of action in the environment of toxicants, and life-history features of the individual organism of concern. To promote scientific consensus on ERA schemes, this review is intended to provide a guideline on short-term ERA involving dioxin chemicals and to identify key findings for exposure assessment based on policies of different agencies. It also presents possible adverse effects of dioxins on ecosystems, toxicity equivalence methodology, environmental fate and transport modeling, and development of stressor-response profiles for dioxin-like chemicals.
  15. Rasouli E, Shahnavaz Z, Basirun WJ, Rezayi M, Avan A, Ghayour-Mobarhan M, et al.
    Anal Biochem, 2018 09 01;556:136-144.
    PMID: 29981317 DOI: 10.1016/j.ab.2018.07.002
    Human papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus. A portable biosensing device could give rapid and reliable results for the identification and quantitative determination of the virus. The fabrication of electrochemical biosensors is one of the current techniques utilized to achieve this aim. In such electrochemical biosensors, a single-strand DNA is immobilized onto an electrically conducting surface and the changes in electrical parameters due to the hybridization on the electrode surface are measured. This review covers the recent developments in electrochemical DNA biosensors for the detection of HPV virus. Due to the several advantages of electrochemical DNA biosensors, their applications have witnessed an increased interest and research focus nowadays.
  16. Rasouli E, Basirun WJ, Rezayi M, Shameli K, Nourmohammadi E, Khandanlou R, et al.
    Int J Nanomedicine, 2018;13:6903-6911.
    PMID: 30498350 DOI: 10.2147/IJN.S158083
    Introduction: In the present research, we report a quick and green synthesis of magnetite nanoparticles (Fe3O4-NPs) in aqueous solution using ferric and ferrous chloride, with different percentages of natural honey (0.5%, 1.0%, 3.0% and 5.0% w/v) as the precursors, stabilizer, reducing and capping agent, respectively. The effect of the stabilizer on the magnetic properties and size of Fe3O4-NPs was also studied.

    Methods: The nanoparticles were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscopy, energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy.

    Results: The XRD analysis indicated the presence of pure Fe3O4-NPs while the TEM images indicated that the Fe3O4-NPs are spherical with a diameter range between 3.21 and 2.22 nm. The VSM study demonstrated that the magnetic properties were enhanced with the decrease in the percentage of honey. In vitro viability evaluation of Fe3O4-NPs performed by using the MTT assay on the WEHI164 cells demonstrated no significant toxicity in higher concentration up to 140.0 ppm, which allows them to be used in some biological applications such as drug delivery.

    Conclusion: The presented synthesis method can be used for the controlled synthesis of Fe3O4-NPs, which could be found to be important in applications in biotechnology, biosensor and biomedicine, magnetic resonance imaging and catalysis.

  17. Rasouli E, Basirun WJ, Johan MR, Rezayi M, Darroudi M, Shameli K, et al.
    J. Cell. Biochem., 2019 04;120(4):6624-6631.
    PMID: 30368873 DOI: 10.1002/jcb.27958
    In the present research, we report a greener, faster, and low-cost synthesis of gold-coated iron oxide nanoparticles (Fe3 O4 /Au-NPs) by different ratios (1:1, 2:1, and 3:1 molar ratio) of iron oxide and gold with natural honey (0.5% w/v) under hydrothermal conditions for 20 minutes. Honey was used as the reducing and stabilizing agent, respectively. The nanoparticles were characterized by X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), vibrating sample magnetometer (VSM), and fourier transformed infrared spectroscopy (FT-IR). The XRD analysis indicated the presence of Fe3 O4 /Au-NPs, while the TEM images showed the formation of Fe3 O4 /Au-NPs with diameter range between 3.49 nm and 4.11 nm. The VSM study demonstrated that the magnetic properties were decreased in the Fe3 O4 /Au-NPs compared with the Fe3 O4 -NPs. The cytotoxicity threshold of Fe3 O4 /Au-NPs in the WEHI164 cells was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was demonstrated no significant toxicity in higher concentration up to 140.0 ppm which can become the main candidates for biological and biomedical applications, such as drug delivery.
  18. Peyman N, Tavakoly Sany SB, Tajfard M, Hashim R, Rezayi M, Karlen DJ
    Environ Sci Process Impacts, 2017 Aug 16;19(8):1086-1103.
    PMID: 28776620 DOI: 10.1039/c7em00200a
    A set of methodological tools was tested to assess the sensitivity of several ecological and biological indices to eutrophication while at the same time attempting to explore a linkage among pressures, classification assessment and drivers. Industrial discharges, harbor activities, natural interactions and river discharges are the pressures most related to the eutrophication process in tropical coastal water bodies. Among the eutrophication indices used, TRIX and operational indicators overestimated the eutrophication status in the study area, but EI and chl-a seems to be a rather responsive index to reflect the first stage of eutrophication. It is noteworthy that EI and chl-a showed better overall agreement with the ecological quality status (EcoQ) showing that probably it reflects the indirect relation of macrobenthic with water eutrophication in a better way. An ecological boundary of EI and chl-a from moderate to poor may be needed in order to explain the poor status of relatively eutrophic Klang Strait coastal sites.
  19. Fani M, Rezayi M, Meshkat Z, Rezaee SA, Makvandi M, Abouzari-Lotf E, et al.
    J Cell Physiol, 2019 08;234(8):12433-12441.
    PMID: 30633358 DOI: 10.1002/jcp.28087
    BACKGROUND: Human T-lymphotropic virus Type 1 (HTLV-1) is a retrovirus that is endemic in some regions of the world. It is known to cause several diseases like adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Serology and molecular methods have been used to detect this virus. Of these, enzyme-linked immunosorbent assay (ELISA) is used as a primary screening method and this is usually followed by western blotting (WB) and polymerase chain reaction (PCR) methods as confirmatory tests. We conducted a systematic review of the different techniques used in the diagnosis of HTLV-1 infection.

    MATERIALS AND METHODS: Our search was limited to original papers in the English language from 2010 to 2018 using several databases including Pubmed, Scopus, Google Scholar, Iranmedex, and Scientific Information Database. A manual search of references provided in the included papers was also performed.

    RESULTS: Of 101 electronically searched citations, 43 met the inclusion criteria. ELISA is commonly used for qualitative and screening detection, and WB and PCR techniques are used to confirm infection.

    CONCLUSION: Among all the reported methods for detection of HTLV-1, only serological and molecular tests are used as the most common technical assays for HTLV-1. The ELISA assay, without a confirmatory test, has several limitations and affect the accuracy of the results. Owing to the prevalence of HTLV-1 and limitations of the current detection methods, further evaluation of the accuracy of these methods is needed. There are new opportunities for applying novel technological advances in microfluidics, biosensors, and lab-on-a-chip systems to perform HTLV-1 diagnostics.

Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links