Displaying all 11 publications

Abstract:
Sort:
  1. Cheng PG, Teoh TC, Rizman-Idid M
    Int J Med Mushrooms, 2021;23(7):63-77.
    PMID: 34375519 DOI: 10.1615/IntJMedMushrooms.2021038682
    In this study, crude extracts of Ganoderma lucidum (NGCs) were compared to the crude extracts of G. lucidum that has antler-like fruiting bodies (AGCs) for their cytotoxicity, inhibitory effects on the attachment of human immunodeficiency virus (HIV)-1 glycoprotein 120 (gp120) to cluster of differentiation 4 (CD4), identification and molecular docking simulations of chemical compounds to predict the best ligand inhibitor and the binding mechanism. Results showed that AGCs had a higher percentage of inhibition (54.3% ± 6.2%) at 150 ppm and higher cytotoxicity (half maximal cytotoxic concentration [CC50] < 300 ppm) than NGCs (CC50 < 400 ppm). Quadrupole time-of-flight (QTOF) liquid chromatography- mass spectrometry (LC-MS) results successfully identified 32 chemical compounds in AGCs and NGCs, comprising mostly ganoderic acids (62%) and their derivatives. Molecular docking simulations of ganolucidic acid A/D and ganoderic acid A/B predicted the strongest binding affinity via hydrogen bonding, suggesting the inhibition of HIV-1 gp120 attachment to CD4. The highest and lowest occupied molecular orbital (HOMO and LUMO, respectively) gap energies of ganoderic acids tended to have less negative HOMO energy and smaller HOMO-LUMO gap energy, implying increased interactions of ligands to the gp120 protein receptor. AGCs showed higher inhibition against HIV-1 gp120 than NGCs due to a higher abundance of ganoderic and ganolucidic acids, whereby both acids contributed the highest number of hydrogen bonds and polar interactions from the hydroxyl and carboxylic functional groups.
  2. Rizman-Idid M, Farrah-Azwa AB, Chong VC
    Zool Stud, 2016;55:e35.
    PMID: 31966180 DOI: 10.6620/ZS.2016.55-35
    Mohammed Rizman-Idid, Abu Bakar Farrah-Azwa, and Ving Ching Chong (2016) Scientific enquiries into jellyfish blooms and associated problems are often deterred by the lack of taxonomical and ecological studies worldwide. Taxonomic difficulty is attributed to the high degree of morphological variations among and within species. To date, only two scyphozoan jellyfish species have been documented from field surveys in Malaysian waters, whereas another four Malaysian scyphozoan and two cubozoan jellyfish species have been mentioned in toxicological studies. None of these species have; however, been verified. This study thus aimed to document and resolves the uncertainty of earlier identified species in the region using morphology and molecular DNA sequencing. Jellyfish specimens were collected from Malaysian waters in the Straits of Malacca, South-China Sea and the Sulu-Sulawesi Sea over two years (June 2008 to October 2010), and their DNA sequences were compared with those from the Atlantic and Pacific regions. Ten scyphozoan and two cubozoan species were recorded in Malaysian waters (South China Sea and Straits of Malacca). These jellyfish included eight species from the order Rhizostomeae (Rhizostomatidae, Lobonematidae, Mastigiidae, Catostylidae and Cepheidae), two species from Semaestomeae (Pelagiidae and Cyaneidae) and two species from class Cubozoa; one from order Carybdeida (family Carukiidae) and another from order Chirodropida (family Chiropsalmidae). Molecular identification of species using phylogenetic approaches was based on DNA sequences of partial cytochrome oxidase I (COI), 16S and internal transcribed spacer (ITS1) regions. The COI phylogenetic tree of Cubozoa and Scyphozoa species from the Atlantic and Pacific regions showed distinct clustering of six Malaysian jellyfish species. However, most of the deeper divergences and relationships between the families were unresolved, which were also observed in the 16S and ITS1 phylogenetic trees. The Malaysian edible species Lobonemoides robustus, Rhopilema hispidum and Rhopilema esculentum were grouped within Rhizostomeae, whereas other scyphozoans showed phylogenetic affinities to Semaestomeae and Kolpophorae. Chrysaora and Cyanea appeared non-monophyletic; however their paraphyly was not confirmed. This study has provided the much needed baseline information on the taxonomy of Malaysian jellyfish species which have been substantiated by partial COI, 16S and ITS1 sequences. A total of 12 putative species of jellyfish were identified, which encompassed 12 genera.
  3. Tan SH, Rizman-Idid M, Mohd-Aris E, Kurahashi H, Mohamed Z
    Forensic Sci Int, 2010 Jun 15;199(1-3):43-9.
    PMID: 20392577 DOI: 10.1016/j.forsciint.2010.02.034
    Insect larvae and adult insects found on human corpses provide important clues for the estimation of the postmortem interval (PMI). Among all necrophagous insects, flesh flies (Diptera: Sarcophagidae) are considered as carrion flies of forensic importance. DNA variations of 17 Malaysian, two Indonesian and one Japanese flesh fly species are analysed using the mitochondrial COI and COII. These two DNA regions were useful for identifying most species experimented. However, characterisation of the species was not sufficiently made in the case of Sarcophaga javanica. Seventeen Malaysian species of forensic importance were successfully clustered into distinct clades and grouped into the six species groups: peregrina, albiceps, dux, pattoni, princeps and ruficornis. These groups correspond with generic or subgeneric taxa of the subfamily Sarcophaginae: Boettcherisca, Parasarcophaga, Liosarcophaga, Sarcorohdendorfia-Lioproctia, Harpagophalla-Seniorwhitea and Liopygia. The genetic variations found in COI and COII can be applied not only to identify the species of forensic importance, but also to understand the taxonomic positions, generic or subgeneric status, of the sarcophagine species.
  4. Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Abdul Razak S
    Molecules, 2019 Sep 10;24(18).
    PMID: 31510066 DOI: 10.3390/molecules24183298
    This study evaluated the effect of seasonal variation on the physicochemical, biochemical, and nutritional composition of Gracilaria manilaensis. Sampling was designed during the main monsoon seasons in Malaysia-the Southwest monsoon (SWM) and Northeast monsoon (NEM)-to understand the intraspecific variation (p < 0.05). Carbohydrates, protein, and dietary fiber were found to be higher in NEM-G. manilaensis, whereas a higher ash content was quantified in SWM-G. manilaensis. No significant differences were found in crude lipid and moisture content (p > 0.05). Vitamin B2 was calculated as (0.29 ± 0.06 mg 100 g-1) and (0.38 ± 0.06 mg 100 g-1) for the NEM and SWM samples, respectively (p < 0.05). The fatty acid profile showed the dominance of saturated fatty acids (SFAs)-palmitic acids, stearic acid, and myristic acid-while the mineral contents were found to be good sources of calcium (1750.97-4047.74 mg 100 g-1) and iron (1512.55-1346.05 mg 100 g-1). Tryptophan and lysine were recorded as the limiting essential amino acids (EAAs) in NEM G. manilaensis, while leucine and phenylalanine were found to be the limiting EAAs in the SWM samples. None of the extracts exhibited antibacterial properties against the screened strains. The study concluded that seasonal changes have a great effect on the biochemical composition of G. manilaensis.
  5. Du J, Loh KH, Then AY, Zheng X, Teguh Peristiwady, Rizman-Idid M, et al.
    Zookeys, 2019;861:107-118.
    PMID: 31333328 DOI: 10.3897/zookeys.861.34043
    Five specimens of Epinephelusepistictus (Temminck & Schlegel, 1843) were collected from a major landing site located on the west coast of Peninsula Malaysia during a fish faunal survey on 23 August 2017. The present study extends the distribution range of E.epistictus southwards from Andaman Sea to the Strait of Malacca. Species identification was confirmed by colour pattern and DNA barcoding (567 bp of cytochrome C oxidase I) of all E.epistictus specimens and nine closely related Epinephelus species. The interspecies genetic distance ranged from 0.002-0.245. This study also presents, for the first time for Malaysia, data on length-weight relationships and otolith measurements. It contributes to a better understanding of taxonomy, and phylogenetic and genetic diversity of E.epistictus.
  6. Lee LC, Rizman-Idid M, Alias SA, Palaniveloo K, Gu H
    Biodivers Data J, 2022;10:e81533.
    PMID: 36761577 DOI: 10.3897/BDJ.10.e81533
    Fungal species members of the genus Neodevriesia have been known to occur in marine environments. This report documents the first record of the fungal genus Neodevriesia isolated from scleractinian corals. Three isolated strains were identified from a phylogenetic tree that was constructed, based on the nuclear ribosomal internal transcribed spacer and partial large subunit (ITS + LSU) DNA sequences. Isolates were closely related to both Neodevriesiashakazului (Crous) Crous and Neodevriesiaqueenslandica (Crous, R.G. Shivas & McTaggart) Crous, but formed a distinct clade with strong support that implies a potentially genetic variant of a known species or even a novel species. These findings contribute to the fungal diversity checklist in Malaysia and knowledge about marine fungi associated with scleractinian corals.
  7. Hatin WI, Nur-Shafawati AR, Zahri MK, Xu S, Jin L, Tan SG, et al.
    PLoS One, 2011;6(4):e18312.
    PMID: 21483678 DOI: 10.1371/journal.pone.0018312
    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.
  8. Du J, Loh KH, Hu W, Zheng X, Affendi YA, Ooi JLS, et al.
    Biodivers Data J, 2019;7:e47537.
    PMID: 31849564 DOI: 10.3897/BDJ.7.e47537
    Background: Redang Islands Marine Park consists of nine islands in the state of Terengganu, Malaysia. Redang Island is one of the largest off the east coast of Peninsular Malaysia, which is famous for its crystal-clear waters and white sandy beaches. The ichthyofauna of the Redang archipelago was surveyed by underwater visual observations between August 2016 and May 2018. Census data were compiled with existing records into the checklist of the marine fish of the Redang archipelago presented herein. A total of 314 species belonging to 51 families were recorded. The most speciose families (Pomacentridae, Labridae, Scaridae, Serranidae, Apogonidae, Carangidae, Gobiidae, Chaetodontidae, Lutjanidae, Nemipteridae and Siganidae) were also amongst the most speciose at the neighbouring Tioman archipelago (except Chaetodontidae). The coral fish diversity index value for the six families of coral reef fishes (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae and Acanthuridae) of the study sites was 132. We estimated that there were 427 coral reef fish species in the Redang archipelago. According to the IUCN Red List, eight species are Near Threatened (Carcharhinus melanopterus, Chaetodon trifascialis, Choerodon schoenleinii, Epinephelus fuscoguttatus, E. polyphekadion, Plectropomus leopardus, Taeniura lymma and Triaenodon obesus), eleven are Vulnerable (Bolbometopon muricatum, Chaetodon trifasciatus, Chlorurus sordidus, Dascyllus trimaculatus, Epinephelus fuscoguttatus, E. polyphekadion, Halichoeres marginatus, Heniochus acuminatus, Nebrius ferrugineus, Neopomacentrus cyanomos and Plectropomus areolatus) and three are Endangered (Amphiprion clarkia, Cheilinus undulatus and Scarus ghobban) in the Redang archipelago.

    New information: Five species are new records for Malaysia (Ctenogobiops mitodes, Epibulus brevis, Halichoeres erdmanni, H. richmondi and Scarus caudofasciatus) and 25 species are newly recorded in the Redang archipelago.

  9. Hatin WI, Nur-Shafawati AR, Etemad A, Jin W, Qin P, Xu S, et al.
    Hugo J, 2014 Dec;8(1):5.
    PMID: 27090253 DOI: 10.1186/s11568-014-0005-z
    BACKGROUND: The Malays consist of various sub-ethnic groups which are believed to have different ancestral origins based on their migrations centuries ago. The sub-ethnic groups can be divided based on the region they inhabit; the northern (Melayu Kedah and Melayu Kelantan), western (Melayu Minang) and southern parts (Melayu Bugis and Melayu Jawa) of Peninsular Malaysia. We analyzed 54,794 autosomal single nucleotide polymorphisms (SNPs) which were shared by 472 unrelated individuals from 17 populations to determine the genetic structure and distributions of the ancestral genetic components in five Malay sub-ethnic groups namely Melayu Bugis, Melayu Jawa, Melayu Minang, Melayu Kedah, and Melayu Kelantan. We also have included in the analysis 12 other study populations from Thailand, Indonesia, China, India, Africa and Orang Asli sub-groups in Malay Peninsula, obtained from the Pan Asian SNP Initiative (PASNPI) Consortium and International HapMap project database.

    RESULTS: We found evidence of genetic influx from Indians to Malays, more in Melayu Kedah and Melayu Kelantan which are genetically different from the other Malay sub-ethnic groups, but similar to Thai Pattani. More than 98% of these northern Malays haplotypes could be found in either Indians or Chinese populations, indicating a highly admixture pattern among populations. Nevertheless, the ancestry lines of Malays, Indonesians and Thais were traced back to have shared a common ancestor with the Proto-Malays and Chinese.

    CONCLUSIONS: These results support genetic admixtures in the Peninsular Malaysia Malay populations and provided valuable information on the enigmatic demographical history as well as shed some insights into the origins of the Malays in the Malay Peninsula.

  10. Fauziah SH, Rizman-Idid M, Cheah W, Loh KH, Sharma S, M R N, et al.
    Mar Pollut Bull, 2021 Jun;167:112258.
    PMID: 33839567 DOI: 10.1016/j.marpolbul.2021.112258
    The launch of Roadmap towards Zero Single-use Plastics in 2018 demands baseline data on the management of marine debris in Malaysia. In 2021, Malaysia is placed 28th top plastic polluter in the world with plastic consumption at 56 kg/capita/year, therefore data on mismanaged plastic is imperative. This paper reviews the abundance and distribution of marine debris in selected Malaysian beaches over the last decade (2010-2020) and discusses issue on its management. Plastic debris on beaches in Malaysia, was reported to range from 64 items/m2, to as high as 1930 items/m2, contributing 30-45% of total waste collected. Plastics film was the most dominant, mainly originated from packaging materials. Therefore, appropriate action including improved marine waste management system is crucial to tackle the problem, together with effective governance mechanisms. Various suggestions were proposed based on the statistical-environmental data to reduce the occurrence of marine debris in the country.
  11. Palaniveloo K, Ong KH, Satriawan H, Abdul Razak S, Suciati S, Hung HY, et al.
    3 Biotech, 2023 Oct;13(10):337.
    PMID: 37701628 DOI: 10.1007/s13205-023-03725-6
    Alzheimer's disease (AD) is a neurodegenerative disease that causes deterioration in intelligence and psychological activities. Yet, till today, no cure is available for AD. The marine environment is an important sink of bioactive compounds with neuroprotective potential with reduced adverse effects. Recently, we collected the red algae Laurencia snackeyi from Terumbu Island, Malaysia which is known to be rich in halogenated metabolites making it the most sought-after red algae for pharmaceutical studies. The red alga was identified based on basic morphological characteristics, microscopic observation and chemical data from literature. The purplish-brown algae was confirmed a new record. In Malaysia, this species is poorly documented in Peninsular Malaysia as compared to its eastern continent Borneo. Thus, this study intended to investigate the diversity of secondary metabolites present in the alga and its cholinesterase inhibiting potential for AD. The extract inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of  14.45 ± 0.34 μg mL-1 and 39.59 ± 0.24 μg mL-1, respectively. Subsequently, we isolated the synderanes, palisadin A (1), aplysistatin (2) and 5-acetoxypalisadin B (3) that was not exhibit potential. Mass spectrometry analysis detected at total of 33 additional metabolites. The computational aided molecular docking using the AChE and BChE receptors on all metabolites shortlisted 5,8,11,14-eicosatetraynoic acid (31) and 15-hydroxy-1-[2-(hydroxymethyl)-1-piperidinyl]prost-13-ene-1,9-dione (42) with best inhibitory properties, respectively with the lowest optimal combination of S-score and RMSD values. This study shows the unexplored potential of marine natural resources, however, obtaining sufficient biomass for detailed investigation is an uphill task. Regardless, there is a lot of potential for future prospects with a wide range of marine natural resources to study and the incorporation of synthetic chemistry, in vivo studies in experimental design.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03725-6.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links