Displaying all 2 publications

Abstract:
Sort:
  1. Roslan ND, Sundram S, Hong LW, Ling KL, Vadamalai G
    Mol Biol Rep, 2023 Nov;50(11):9699-9705.
    PMID: 37676433 DOI: 10.1007/s11033-023-08771-0
    BACKGROUND: Sequence variation has been attributed to symptom variations but has not been investigated in Orange Spotting-Coconut cadang-cadang viroid (OS-CCCVd) infected palms. Likewise, the relationship between Coconut cadang-cadang viroid (CCCVd) variants, Orange Spotting (OS) severity and the accumulation of the viroid in the palms have not been elucidated. This paper describes the characterization of CCCVd variants by cloning and sequencing, followed by correlation with symptom expression.

    METHODS AND RESULTS: Total nucleic acids were extracted from leaf samples harvested from frond 20 of seven Dura × Pisifera (D × P) African oil palm (Elaeis guineensis Jacq.) aged between 13 and 21 years old collected from local plantations. The nucleic acids were fractionated using 5% non-denaturing polyacrylamide gel electrophoresis (PAGE) before being subjected to detection by reverse transcribed polymerase chain reaction (RT-PCR). The PCR products were cloned into a plasmid vector and the sequence of the clones was analyzed. CCCVd variants were quantified using real-time qPCR assay with CCCVd specific primers. Sixteen randomly selected clones of (OP246) had an arbitrary 100% identity with CCCVdOP246 (GeneBank Accession No: HQ608513). Meanwhile, four clones had >93% similarity with several minor sequence variations forming variants of OP234, OP235, OP251 and OP279.

    CONCLUSION: The OS symptoms observed in the field were characterized into three categories based on the size and morphology of the orange spots on the affected fronds. In addition, there was no direct correlation between disease severity and the accumulation of CCCVd variants in oil palm. This finding is the first report describing the sequence variation of the CCCVd RNA and symptom variation in OS oil palm field samples.

  2. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links