Displaying all 3 publications

Abstract:
Sort:
  1. Maselli A, Dhawan A, Cesqui B, Russo M, Lacquaniti F, d'Avella A
    Front Hum Neurosci, 2017;11:505.
    PMID: 29163094 DOI: 10.3389/fnhum.2017.00505
    The ability to intercept or avoid a moving object, whether to catch a ball, snatch one's prey, or avoid the path of a predator, is a skill that has been acquired throughout evolution by many species in the animal kingdom. This requires processing early visual cues in order to program anticipatory motor responses tuned to the forthcoming event. Here, we explore the nature of the early kinematics cues that could inform an observer about the future direction of a ball projected with an unconstrained overarm throw. Our goal was to pinpoint the body segments that, throughout the temporal course of the throwing action, could provide key cues for accurately predicting the side of the outgoing ball. We recorded whole-body kinematics from twenty non-expert participants performing unconstrained overarm throws at four different targets placed on a vertical plane at 6 m distance. In order to characterize the spatiotemporal structure of the information embedded in the kinematics of the throwing action about the outgoing ball direction, we introduced a novel combination of dimensionality reduction and machine learning techniques. The recorded kinematics clearly shows that throwing styles differed considerably across individuals, with corresponding inter-individual differences in the spatio-temporal structure of the thrower predictability. We found that for most participants it is possible to predict the region where the ball hit the target plane, with an accuracy above 80%, as early as 400-500 ms before ball release. Interestingly, the body parts that provided the most informative cues about the action outcome varied with the throwing style and during the time course of the throwing action. Not surprisingly, at the very end of the action, the throwing arm is the most informative body segment. However, cues allowing for predictions to be made earlier than 200 ms before release are typically associated to other body parts, such as the lower limbs and the contralateral arm. These findings are discussed in the context of the sport-science literature on throwing and catching interactive tasks, as well as from the wider perspective of the role of sensorimotor coupling in interpersonal social interactions.
  2. Kinfe TM, Buchfelder M, Chaudhry SR, Chakravarthy KV, Deer TR, Russo M, et al.
    Int J Mol Sci, 2019 Sep 24;20(19).
    PMID: 31554241 DOI: 10.3390/ijms20194737
    Chronic pain is a devastating condition affecting the physical, psychological, and socioeconomic status of the patient. Inflammation and immunometabolism play roles in the pathophysiology of chronic pain disorders. Electrical neuromodulation approaches have shown a meaningful success in otherwise drug-resistant chronic pain conditions, including failed back surgery, neuropathic pain, and migraine. A literature review (PubMed, MEDLINE/OVID, SCOPUS, and manual searches of the bibliographies of known primary and review articles) was performed using the following search terms: chronic pain disorders, systemic inflammation, immunometabolism, prediction, biomarkers, metabolic disorders, and neuromodulation for chronic pain. Experimental studies indicate a relationship between the development and maintenance of chronic pain conditions and a deteriorated immunometabolic state mediated by circulating cytokines, chemokines, and cellular components. A few uncontrolled in-human studies found increased levels of pro-inflammatory cytokines known to drive metabolic disorders in chronic pain patients undergoing neurostimulation therapies. In this narrative review, we summarize the current knowledge and possible relationships of available neurostimulation therapies for chronic pain with mediators of central and peripheral neuroinflammation and immunometabolism on a molecular level. However, to address the needs for predictive factors and biomarkers, large-scale databank driven clinical trials are needed to determine the clinical value of molecular profiling.
  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links