Displaying all 7 publications

Abstract:
Sort:
  1. Khan WZ, Aalsalem MY, Saad NM
    PLoS One, 2015;10(5):e0123069.
    PMID: 25992913 DOI: 10.1371/journal.pone.0123069
    Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
  2. Alyan E, Saad NM, Kamel N
    Hum Factors, 2021 Nov;63(7):1230-1255.
    PMID: 32286888 DOI: 10.1177/0018720820913173
    OBJECTIVE: The purpose of this study is to examine the effect of the workstation type on the severity of mental stress by means of measuring prefrontal cortex (PFC) activation using functional near-infrared spectroscopy.

    BACKGROUND: Workstation type is known to influence worker's health and performance. Despite the practical implications of ergonomic workstations, limited information is available regarding their impact on brain activity and executive functions.

    METHOD: Ten healthy participants performed a Montreal imaging stress task (MIST) in ergonomic and nonergonomic workstations to investigate their effects on the severity of the induced mental stress.

    RESULTS: Cortical hemodynamic changes in the PFC were observed during the MIST in both the ergonomic and nonergonomic workstations. However, the ergonomic workstation exhibited improved MIST performance, which was positively correlated with the cortical activation on the right ventrolateral and the left dorsolateral PFC, as well as a marked decrease in salivary alpha-amylase activity compared with that of the nonergonomic workstation. Further analysis using the NASA Task Load Index revealed a higher weighted workload score in the nonergonomic workstation than that in the ergonomic workstation.

    CONCLUSION: The findings suggest that ergonomic workstations could significantly improve cognitive functioning and human capabilities at work compared to a nonergonomic workstation.

    APPLICATION: Such a study could provide critical information on workstation design and development of mental stress that can be overlooked during traditional workstation design and mental stress assessments.

  3. Alyan E, Saad NM, Kamel N, Rahman MA
    Appl Ergon, 2021 Oct;96:103497.
    PMID: 34139374 DOI: 10.1016/j.apergo.2021.103497
    This study aims to evaluate the effect of workstation type on the neural and vascular networks of the prefrontal cortex (PFC) underlying the cognitive activity involved during mental stress. Workstation design has been reported to affect the physical and mental health of employees. However, while the functional effects of ergonomic workstations have been documented, there is little research on the influence of workstation design on the executive function of the brain. In this study, 23 healthy volunteers in ergonomic and non-ergonomic workstations completed the Montreal imaging stress task, while their brain activity was recorded using the synchronized measurement of electroencephalography and functional near-infrared spectroscopy. The results revealed desynchronization in alpha rhythms and oxygenated hemoglobin, as well as decreased functional connectivity in the PFC networks at the non-ergonomic workstations. Additionally, a significant increase in salivary alpha-amylase activity was observed in all participants at the non-ergonomic workstations, confirming the presence of induced stress. These findings suggest that workstation design can significantly impact cognitive functioning and human capabilities at work. Therefore, the use of functional neuroimaging in workplace design can provide critical information on the causes of workplace-related stress.
  4. Alyan E, Saad NM, Kamel N, Yusoff MZ, Zakariya MA, Rahman MA, et al.
    Sensors (Basel), 2021 Mar 11;21(6).
    PMID: 33799722 DOI: 10.3390/s21061968
    This study aims to investigate the effects of workplace noise on neural activity and alpha asymmetries of the prefrontal cortex (PFC) during mental stress conditions. Workplace noise exposure is a pervasive environmental pollutant and is negatively linked to cognitive effects and selective attention. Generally, the stress theory is assumed to underlie the impact of noise on health. Evidence for the impacts of workplace noise on mental stress is lacking. Fifteen healthy volunteer subjects performed the Montreal imaging stress task in quiet and noisy workplaces while their brain activity was recorded using electroencephalography. The salivary alpha-amylase (sAA) was measured before and immediately after each tested workplace to evaluate the stress level. The results showed a decrease in alpha rhythms, or an increase in cortical activity, of the PFC for all participants at the noisy workplace. Further analysis of alpha asymmetry revealed a greater significant relative right frontal activation of the noisy workplace group at electrode pairs F4-F3 but not F8-F7. Furthermore, a significant increase in sAA activity was observed in all participants at the noisy workplace, demonstrating the presence of stress. The findings provide critical information on the effects of workplace noise-related stress that might be neglected during mental stress evaluations.
  5. Aalsalem MY, Khan WZ, Saad NM, Hossain MS, Atiquzzaman M, Khan MK
    PLoS One, 2016;11(7):e0158072.
    PMID: 27409082 DOI: 10.1371/journal.pone.0158072
    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
  6. Wan Puteh SE, Saad NM, Aljunid SM, Abdul Manaf MR, Sulong S, Sagap I, et al.
    Asia Pac Psychiatry, 2013 Apr;5 Suppl 1:110-7.
    PMID: 23857846 DOI: 10.1111/appy.12055
    The rapidly increasing of incidence colorectal cancer (CRC) in Malaysia and the introduction of new treatments that prolong survival advocating treatment outcome measures such as patients' quality of life (QOL) are evaluated in this study. The study aims to determine QOL in CRC patients according to cancer stage and age.
  7. Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY, Hassan L, et al.
    Emerg Infect Dis, 2010 Dec;16(12):1990-3.
    PMID: 21122240 DOI: 10.3201/eid1612.091790
    We isolated and characterized Nipah virus (NiV) from Pteropus vampyrus bats, the putative reservoir for the 1998 outbreak in Malaysia, and provide evidence of viral recrudescence. This isolate is monophyletic with previous NiVs in combined analysis, and the nucleocapsid gene phylogeny species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links