Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Sabri S, Mohamed Hussin NA, Chooi WT
    PMID: 37389816 DOI: 10.1089/jayao.2023.0016
    Purpose: Hope is vital for cancer patients to cope with their illnesses. It is positively associated with better health outcomes, quality of life, and daily functioning. However, restoring hope after a cancer diagnosis can be challenging, especially for young adult cancer patients. This research aimed to investigate hope among young adults with cancer throughout their cancer experience and the exploration of hope preservation in these individuals. Methods: This qualitative study involved 14 young adults recruited from a closed Facebook group. The median age of the participants was 30.5 years (range 20-39 years), and their median survival year was 3 years (range 1-18 years from the date of diagnosis). Semistructured interviews and a thematic analysis were performed to identify the major themes that emerged from these interviews. Results: The findings identified that young adults expressed hopes for cancer advocacy, good physical and mental health, ease in the afterlife, and uncertain hopes due to thoughts of death. Three areas that influenced their hope are: (1) active hope with cancer peers; (2) cancer prognosis and hope; and (3) hope comes from prayer. Their cultural and religious beliefs influenced the various forms of hope and affected their experiences with cancer. In addition, this study discovered that not all positive communication with their physician resulted in hope. Conclusion: These findings provide important insight to health care professionals (HCPs) by encouraging young adults to discuss hope and improving the existing oncology social work-based intervention. This study suggests that hope is essential for chronic illness patients and should be supported continuously during and after treatments.
  2. Maxwell O, Wagiran H, Ibrahim N, Lee SK, Sabri S
    Radiat Prot Dosimetry, 2013 Dec;157(2):271-7.
    PMID: 23754832 DOI: 10.1093/rpd/nct140
    The purpose of this project is to evaluate the suitability of different sites as locations for obtaining underground water for consumption. The analysis of ²³⁸U, ²³²Th and ⁴⁰K from rock samples from each layer of borehole at a depth of ∼50 m at Site A borehole, S3L1-S3L6 in Gosa and 40 m at Site B borehole, S4L1-S4L5 in Lugbe, Abuja, north central Nigeria is presented. The gamma-ray spectrometry was carried out using a high-purity germanium detector coupled to a computer-based high-resolution multichannel analyzer. The activity concentrations at Site A borehole for ²³⁸U have a mean value of 26 ± 3, ranging from 23 ± 2 to 30 ± 3 Bq kg⁻¹, ²³²Th a mean value of 63 ± 5, ranging from 48 ± 4 to 76 ± 6 Bq kg⁻¹ and ⁴⁰K a mean value of 573 ± 72, ranging from 437 ± 56 to 821 ± 60 Bq kg⁻¹. The activity concentrations at Site B borehole for ²³⁸U have a mean value of 20 ± 2, ranging from 16 ± 2 to 23 ± 2 Bq kg⁻¹, ²³²Th a mean value of 46 ± 4, ranging from 43 ± 4 to 49 ± 4 Bq kg⁻¹, ⁴⁰K a mean value of 915 ± 116 and ranging from 817 ± 103 Bq kg⁻¹ to 1011 ± 128 Bq kg⁻¹. It is noted that the higher activity concentrations of ²³²Th and ²³⁸U are found in Site A at Gosa. Site B has lower radioactivity, and it is recommended that both sites are suitable for underground water consumption.
  3. Bayat H, Omidi M, Rajabibazl M, Sabri S, Rahimpour A
    J Microbiol Biotechnol, 2017 Feb 28;27(2):207-218.
    PMID: 27840399 DOI: 10.4014/jmb.1607.07005
    Clustered regulatory interspaced short palindromic repeats (CRISPR) in association with CRISPR-associated protein (Cas) is an adaptive immune system, playing a pivotal role in the defense of bacteria and archaea. Ease of handling and cost effectiveness make the CRISPR-Cas system an ideal programmable nuclease tool. Recent advances in understanding the CRISPR-Cas system have tremendously improved its efficiency. For instance, it is possible to recapitulate the chronicle CRISPR-Cas from its infancy and inaugurate a developed version by generating novel variants of Cas proteins, subduing off-target effects, and optimizing of innovative strategies. In summary, the CRISPR-Cas system could be employed in a number of applications, including providing model systems, rectification of detrimental mutations, and antiviral therapies.
  4. Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A
    World J Microbiol Biotechnol, 2017 Jan;33(1):4.
    PMID: 27837408
    Glycosylation represents the most widespread posttranslational modifications, found in a broad spectrum of natural and therapeutic recombinant proteins. It highly affects bioactivity, site-specificity, stability, solubility, immunogenicity, and serum half-life of glycoproteins. Numerous expression hosts including yeasts, insect cells, transgenic plants, and mammalian cells have been explored for synthesizing therapeutic glycoproteins. However, glycosylation profile of eukaryotic expression systems differs from human. Glycosylation strategies have been proposed for humanizing the glycosylation pathways in expression hosts which is the main theme of this review. Besides, we also highlighted the glycosylation potential of protozoan parasites by emphasizing on the mammalian-like glycosylation potential of Leishmania tarentolae known as Leishmania expression system.
  5. Sabri S, Rahman RN, Leow TC, Basri M, Salleh AB
    Protein Expr. Purif., 2009 Dec;68(2):161-6.
    PMID: 19679187 DOI: 10.1016/j.pep.2009.08.002
    Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae alpha-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 degrees C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C(10)-C(16)), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.
  6. Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman RNZRA
    Front Microbiol, 2020;11:565608.
    PMID: 33013795 DOI: 10.3389/fmicb.2020.565608
    The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37-C40 and increase the ratio of C14-C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil.
  7. Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S
    Appl Microbiol Biotechnol, 2018 Jul;102(14):5811-5826.
    PMID: 29749565 DOI: 10.1007/s00253-018-9063-9
    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.
  8. Zahri KNM, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA
    PMID: 33669826 DOI: 10.3390/ijerph18042050
    In the present age, environmental pollution is multiplying due to various anthropogenic activities. Pollution from waste cooking oil is one of the main issues facing the current human population. Scientists and researchers are seriously concerned about the oils released from various activities, including the blockage of the urban drainage system and odor issues. In addition, cooking oil is known to be harmful and may have a carcinogenic effect. It was found that current research studies and publications are growing on these topics due to environmental problems. A bibliometric analysis of studies published from 2001 to 2021 on cooking oil degradation was carried out using the Scopus database. Primarily, this analysis identified the reliability of the topic for the present-day and explored the past and present progresses of publications on various aspects, including the contributing countries, journals and keywords co-occurrence. The links and interactions between the selected subjects (journals and keywords) were further visualised using the VOSviewer software. The analysis showed that the productivity of the publications is still developing, with the most contributing country being the United States, followed by China and India with 635, 359 and 320 publications, respectively. From a total of 1915 publications, 85 publications were published in the Journal of Agricultural and Food Chemistry. Meanwhile, the second and third of the most influential journals were Bioresource Technology and Industrial Crops and Products with 76 and 70 total publications, respectively. Most importantly, the co-occurrence of the author's keywords revealed "biodegradation", "bioremediation", "vegetable oil" and "Antarctic" as the popular topics in this study area, especially from 2011 to 2015. In conclusion, this bibliometric analysis on the degradation of cooking oil may serve as guide for future avenues of research in this area of research.
  9. Yahaya RSR, Normi YM, Phang LY, Ahmad SA, Abdullah JO, Sabri S
    Appl Microbiol Biotechnol, 2021 May;105(10):3955-3969.
    PMID: 33937928 DOI: 10.1007/s00253-021-11321-y
    Keratinase is an important enzyme that can degrade recalcitrant keratinous wastes to form beneficial recyclable keratin hydrolysates. Keratinase is not only important as an alternative to reduce environmental pollution caused by chemical treatments of keratinous wastes, but it also has industrial significance. Currently, the bioproduction of keratinase from native keratinolytic host is considered low, and this hampers large-scale usage of the enzyme. Straightforward approaches of cloning and expression of recombinant keratinases from native keratinolytic host are employed to elevate the amount of keratinase produced. However, this is still insufficient to compensate for the lack of its large-scale production to meet the industrial demands. Hence, this review aimed to highlight the various sources of keratinase and the strategies to increase its production in native keratinolytic hosts. Molecular strategies to increase the production of recombinant keratinase such as plasmid selection, promoter engineering, chromosomal integration, signal peptide and propeptide engineering, codon optimization, and glycoengineering were also described. These mentioned strategies have been utilized in heterologous expression hosts, namely, Escherichia coli, Bacillus sp., and Pichia pastoris, as they are most widely used for the heterologous propagations of keratinases to further intensify the production of recombinant keratinases adapted to better suit the large-scale demand for them. KEY POINTS: • Molecular strategies to enhance keratinase production in heterologous hosts. • Construction of a prominent keratinolytic host from a native strain. • Patent analysis of keratinase production shows rapid high interest in molecular field.
  10. Zahri KNM, Zulkharnain A, Gomez-Fuentes C, Sabri S, Abdul Khalil K, Convey P, et al.
    Life (Basel), 2021 May 20;11(5).
    PMID: 34065265 DOI: 10.3390/life11050456
    Hydrocarbons can cause pollution to Antarctic terrestrial and aquatic ecosystems, both through accidental release and the discharge of waste cooking oil in grey water. Such pollutants can persist for long periods in cold environments. The native microbial community may play a role in their biodegradation. In this study, using mixed native Antarctic bacterial communities, several environmental factors influencing biodegradation of waste canola oil (WCO) and pure canola oil (PCO) were optimised using established one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The factors include salinity, pH, type of nitrogen and concentration, temperature, yeast extract and initial substrate concentration in OFAT and only the significant factors proceeded for the statistical optimisation through RSM. High concentration of substrate targeted for degradation activity through RSM compared to OFAT method. As for the result, all factors were significant in PBD, while only 4 factors were significant in biodegradation of PCO (pH, nitrogen concentration, yeast extract and initial substrate concentration). Using OFAT, the most effective microbial community examined was able to degrade 94.42% and 86.83% (from an initial concentration of 0.5% (v/v)) of WCO and PCO, respectively, within 7 days. Using RSM, 94.99% and 79.77% degradation of WCO and PCO was achieved in 6 days. The significant interaction for the RSM in biodegradation activity between temperature and WCO concentration in WCO media were exhibited. Meanwhile, in biodegradation of PCO the significant factors were between (1) pH and PCO concentration, (2) nitrogen concentration and yeast extract, (3) nitrogen concentration and PCO concentration. The models for the RSM were validated for both WCO and PCO media and it showed no significant difference between experimental and predicted values. The efficiency of canola oil biodegradation achieved in this study provides support for the development of practical strategies for efficient bioremediation in the Antarctic environment.
  11. Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA
    Biology (Basel), 2021 Apr 22;10(5).
    PMID: 33922046 DOI: 10.3390/biology10050354
    The increased usage of petroleum oils in cold regions has led to widespread oil pollutants in soils. The harsh environmental conditions in cold environments allow the persistence of these oil pollutants in soils for more than 20 years, raising adverse threats to the ecosystem. Microbial bioremediation was proposed and employed as a cost-effective tool to remediate petroleum hydrocarbons present in soils without significantly posing harmful side effects. However, the conventional hydrocarbon bioremediation requires a longer time to achieve the clean-up standard due to various environmental factors in cold regions. Recent biotechnological improvements using biostimulation and/or bioaugmentation strategies are reported and implemented to enhance the hydrocarbon removal efficiency under cold conditions. Thus, this review focuses on the enhanced bioremediation for hydrocarbon-polluted soils in cold regions, highlighting in situ and ex situ approaches and few potential enhancements via the exploitation of molecular and microbial technology in response to the cold condition. The bibliometric analysis of the hydrocarbon bioremediation research in cold regions is also presented.
  12. Rusdi NA, Goh HH, Sabri S, Ramzi AB, Mohd Noor N, Baharum SN
    Molecules, 2018 06 06;23(6).
    PMID: 29882808 DOI: 10.3390/molecules23061370
    Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of β-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.
  13. Mazlan SNHS, Ali MSM, Rahman RNZRA, Sabri S, Jonet MA, Leow TC
    Int J Biol Macromol, 2018 Nov;119:1188-1194.
    PMID: 30102982 DOI: 10.1016/j.ijbiomac.2018.08.022
    GDSL esterase J15 (EstJ15) is a member of Family II of lipolytic enzyme. The enzyme was further classified in subgroup SGNH hydrolase due to the presence of highly conserve motif, Ser-Gly-Asn-His in four conserved blocks I, II, III, and V, respectively. X-ray quality crystal of EstJ15 was obtained from optimized formulation containing 0.10 M ammonium sulphate, 0.15 M sodium cacodylate trihydrate pH 6.5, and 20% PEG 8000. The crystal structure of EstJ15 was solved at 1.38 Å with one molecule per asymmetric unit. The structure exhibits α/β hydrolase fold and shared low amino acid sequence identity of 23% with the passenger domain of the autotransporter EstA of Pseudomonas aeruginosa. The active site is located at the centre of the structure, formed a narrow tunnel that hinder long substrates to be catalysed which was proven by the protein-ligand docking analysis. This study facilitates the understanding of high substrate specificity of EstJ15 and provide insights on its catalytic mechanism.
  14. Roslan NN, Ngalimat MS, Leow ATC, Oslan SN, Baharum SN, Sabri S
    Microbiol Res, 2020 Mar;233:126410.
    PMID: 31945517 DOI: 10.1016/j.micres.2020.126410
    Photobacterium species are widely distributed in the marine environment. The overall metabolism of this genus remains largely unknown. In order to improve our knowledge on this bacterium, the relationship between the genome and phenome of the Photobacterium isolate was analyzed. The cream colored, Gram-negative, rod-shaped and motile bacterial strain, J15, was isolated from marine water of Tanjung Pelepas, Johor, Malaysia. The 5,684,538 bp genome of strain J15 comprised 3 contigs (2 chromosomes and 1 plasmid) with G + C content of 46.39 % and contained 4924 protein-coding genes including 180 tRNAs and 40 rRNAs. The phenotypic microarray (PM) as analyzed using BIOLOG showed the utilization of; i) 93 of the 190 carbon sources tested, where 61 compounds were used efficiently; ii) 41 of the 95 nitrogen sources tested, where 22 compounds were used efficiently; and iii) 3 of the 94 phosphorous and sulphur sources tested. Furthermore, high tolerance to osmotic stress, basic pH and toxic compounds as well as resistance to antibiotics of strain J15 were determined by BIOLOG PM. The ANI and kSNP analyses revealed that strain J15 to be the same species with Photobacterium marinum AK15 with ANI value of 96.93 % and bootstrapping value of 100 in kSNP. Based on the ANI and kSNP analyses, strain J15 was identified as P. marinum J15.
  15. Hamdan SH, Maiangwa J, Ali MSM, Normi YM, Sabri S, Leow TC
    Appl Microbiol Biotechnol, 2021 Oct;105(19):7069-7094.
    PMID: 34487207 DOI: 10.1007/s00253-021-11520-7
    Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
  16. Rahman RNZRA, Latip W, Adlan NA, Sabri S, Ali MSM
    Arch Microbiol, 2022 Nov 12;204(12):701.
    PMID: 36370212 DOI: 10.1007/s00203-022-03316-8
    Waxy crude oil is a problem to the oil and gas industry because wax deposition in pipelines reduces the quality of the crude oil. Currently, the industry uses chemicals to solve the problem but it is not environmentally friendly. As an alternative, the biodegradation approach is one of the options. Previously eleven thermophilic bacteria were isolated and exhibited high ability to degrade hydrocarbon up to 70% of waxy crude oil. However, despite the successful study on these single bacteria strains, it is believed that biodegradation of paraffin wax requires more than a single species. Five consortia were developed based on the biodegradation efficiency of 11 bacterial strains. Consortium 3 showed the highest biodegradation (77.77%) with more long-chain alkane degraded throughout the incubation compared to other consortia. Enhancement of hydrocarbon degradation was observed for all consortia especially in long chain alkane (C18-C40). Consortium 3 exhibited higher alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase activities. Moreover, the dominant bacteria in the consortia were determined by denaturing gradient gel electrophoresis (DGGE), which showed the domination of genera Geobacillus, Parageobacillus, and Anoxybacillus. It can be concluded that the bacterial consortia showed higher biodegradation and improved degrading more long-chain hydrocarbon compared to a single isolate.
  17. Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN
    Med Mycol, 2021 Dec 03;59(12):1127-1144.
    PMID: 34506621 DOI: 10.1093/mmy/myab053
    Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate as candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade or interact with the enterocyte membrane components. Candidalysin, however, acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only Sap and Als have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans.

    LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.

  18. Puvanasundram P, Chong CM, Sabri S, Yusoff MSM, Lim KC, Karim M
    Biology (Basel), 2022 Nov 10;11(11).
    PMID: 36358345 DOI: 10.3390/biology11111644
    Compatibility of each strain in a multi-strain probiotic (MSP), along with its properties, becomes a strong base for its formulation. In this study, single-strain probiotics (SSPs) and multi-strain probiotics (MSPs) were evaluated in vitro for strain compatibility, microbial antagonism, biofilm formation capacity, and stress tolerance. Bacillus amyloliquefaciens L11, Enterococcus hirae LAB3, and Lysinibacillus fusiformis SPS11 were chosen as MSP1 candidates because they showed much stronger antagonism to Aeromonas hydrophila and Streptococcus agalactiae than a single probiotic. MSP 2 candidates were Lysinibacillus fusiformis strains SPS11, A1, and Lysinibacillus sphaericus strain NAS32 because the inhibition zone produced by MSP 2 against Vibrio harveyi and Vibrio parahaemolyticus was much higher than that produced by its constituent SSPs. MSP1 in the co-culture assay reduced (p < 0.05) A. hydrophila count from 9.89 ± 0.1 CFU mL−1 to 2.14 ± 0.2 CFU mL−1. The biofilm formation of both MSPs were significantly higher (p < 0.05) than its constituent SSPs and the pathogens. The SSPs in both MSPs generally showed resistance to high temperatures (80, 90, and 100 °C) and a wide range of pH (2 to 9). This in vitro assessment study demonstrates that MSP1 and 2 have the potential to be further explored as multi-strain probiotics on selected aquatic species.
  19. Shah FLA, Baharum SN, Goh HH, Leow TC, Ramzi AB, Oslan SN, et al.
    Mol Biol Rep, 2023 Jun;50(6):5283-5294.
    PMID: 37148413 DOI: 10.1007/s11033-023-08417-1
    BACKGROUND: Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones.

    METHODS AND RESULTS: In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified.

    CONCLUSION: These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.

  20. Ngalimat MS, Raja Abd Rahman RNZ, Yusof MT, Syahir A, Sabri S
    PeerJ, 2019;7:e7478.
    PMID: 31497388 DOI: 10.7717/peerj.7478
    Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by Bacillus aryabhattai, Bacillus oleronius, Bacillus stratosphericus, Bacillus altitudinis, Bacillus amyloliquefaciens, Bacillus nealsonii, Bacillus toyonensis, Bacillus subtilis, Bacillus safensis, Bacillus pseudomycoides, Enterobacter asburiae, Enterobacter cloacae, Pantoea dispersa and Streptomyces kunmingensis. Phenotypic profile of 15 bacterial isolates using GEN III MicroPlate™ system revealed most of the isolates as capable to utilise carbohydrates as well as amino acids and carboxylic acids and derivatives. Proteolytic, lipolytic and cellulolytic activities as determined by enzymatic assays were detected in Bacillus stratosphericus PD6, Bacillus amyloliquefaciens PD9, Bacillus subtilis BD3 and Bacillus safensis BD9. Bacillus amyloliquefaciens PD9 showed broad-spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria in vitro. The multienzymes and antimicrobial activities exhibited by the bacterial isolates from H. itama nest products could provide potential sources of enzymes and antimicrobial compounds for biotechnological applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links