Displaying all 4 publications

Abstract:
Sort:
  1. Zainalaludin Z., Saidi, N., Ci, L. H
    MyJurnal
    This paper aims to profile the backgrounds of the respondents by sex disaggregated, to measure the relationship between two levels of vulnerability and the sex of the respondents, to correlate between two levels of vulnerability, two levels of household financial wellbeing (HFW) and the sex of the vulnerable respondents in freshwater fisheries communities in Peninsular Malaysia. The vulnerable respondents in this paper were sampled through multi-level random sampling. The study locations were Pekan Pahang, Padang Terap Kedah, Lenggong Perak, and Kuala Pilah Negeri Sembilan, which had been sampled to represent the Eastern, Northern, Middle, and Southern Zones of Peninsular Malaysia. With the assistance of the Penghulu (sub-district leader) and the Department of Fisheries in each district, ten villages with freshwater fisheries economic activities were identified and sampled. Fifty male and fifty female vulnerable respondents were sampled in each district with 400 respondents in total reporting. The questionnaire listed seven vulnerability types. On average, the vulnerable respondents in this paper were older people and mostly older single mothers. The majority of the women were older single mothers, less educated, and poorer than men. A significant (p
  2. Wong CKF, Saidi NB, Vadamalai G, Teh CY, Zulperi D
    J Appl Microbiol, 2019 Aug;127(2):544-555.
    PMID: 31077517 DOI: 10.1111/jam.14310
    AIMS: This study sought to investigate the effect of bioformulation on the biocontrol efficacy, microbial viability and storage stability of a consortium of Pseudomonas aeruginosa DRB1 and Trichoderma harzianum CBF2 against Foc Tropical Race 4 (Foc-TR4).

    MATERIALS AND RESULTS: Four bioformulations consisting of dry (pesta granules, talc powder and alginate beads) and liquid formulations were evaluated for their ability to control Foc-TR4, sustain microbial populations after application and maintain microbial stability during storage. All tested bioformulations reduced disease severity (DS) by more than 43·00% with pesta granules producing the highest reduction in DS by 66·67% and the lowest area under the disease progress curve value (468·75) in a glasshouse trial. Microbial populations of DRB1 and CBF2 were abundant in the rhizosphere, rhizoplane and within the roots of bananas after pesta granules application as compared to talc powder, alginate beads and liquid formulations 84 days after inoculation (DAI). The stability of both microbial populations after 180 days of storage at 4°C was the greatest in the pesta granule formulation.

    CONCLUSION: The pesta granule formulation was a suitable carrier of biological control agents (BCA) without compromising biocontrol efficacy, microbial population and storage stability as compared to other bioformulations used in this study.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Pesta granules could be utilized to formulate BCA consortia into biofertilizers. This formulation could be further investigated for possible applications under agricultural field settings.

  3. Awang K, Hadi AH, Saidi N, Mukhtar MR, Morita H, Litaudon M
    Fitoterapia, 2008 Jun;79(4):308-10.
    PMID: 18313862 DOI: 10.1016/j.fitote.2007.11.025
    The bark of Cryptocarya crassinervia provided two new phenantrene alkaloids, 2-hydroxyatherosperminine (1) and N-demethyl-2-methoxyatherosperminine (2).
  4. Mohd Saidi N, Abdullah N, Norizan MN, Janudin N, Mohd Kasim NA, Osman MJ, et al.
    Nanomaterials (Basel), 2022 Nov 07;12(21).
    PMID: 36364698 DOI: 10.3390/nano12213922
    The reputation of nanofluids as a convenient heat transfer media has grown in recent years. The synthesis of nanofluids is often challenging, particularly carbon-based nanofluids, due to the rapid agglomeration of the nanoparticles and the instability of the nanofluids. In this regard, surface modification and surfactant addition are potential approaches to improve the physical and thermal properties of carbon-based nanofluids that have been studied and the structural, morphological, and thermal characteristics of surface-oxidised carbon nanofibre (CNF)-based nanofluids has been characterised. Commercial CNF was first subjected to three different acid treatments to introduce surface oxygen functional groups on the CNF surface. Following the physical and thermal characterisation of the three surface-oxidised CNFs (CNF-MA, CNF-MB, and CNF-MC), including Raman spectroscopy, Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM), the CNF-MB was selected as the best method to synthesise the surface-oxidised CNF-based nanofluid. A total of 40 mL of ultrapure water was used as a pure base fluid and mixed with the surface-oxidised CNF at a concentration range of 0.1-1.0 wt.%, with a fixed of 10 wt.% amount of polyvinylpyrrolidone (PVP). The thermal conductivity of CNF-based nanofluid was then characterised at different temperatures (6, 25, and 40 °C). Based on the results, surface oxidation via Method B significantly affected the extent of surface defects and effectively enhanced the group functionality on the CNF surface. Aside from the partially defective and rough surface of CNF-MB surfaces from the FESEM analysis, the presence of surface oxygen functional groups on the CNF wall was confirmed via the Raman analysis, TGA curve, and FTIR analysis. The visual sedimentation observation also showed that the surface-oxidised CNF particles remained dispersed in the nanofluid due to the weakened van der Waals interaction. The dispersion of CNF particles was improved by the presence of PVP, which further stabilised the CNF-based nanofluids. Ultimately, the thermal conductivity of the surface-oxidised CNF-based nanofluid with PVP was significantly improved with the highest enhancement percentage of 18.50, 16.84, and 19.83% at 6, 25, and 40 °C, respectively, at an optimum CNF concentration of 0.7 wt.%.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links