Displaying all 4 publications

Abstract:
Sort:
  1. Saleem MA, Yasir Siddique M, Nazar MF, Khan SU, Ahmad A, Khan R, et al.
    Langmuir, 2020 07 14;36(27):7908-7915.
    PMID: 32551692 DOI: 10.1021/acs.langmuir.0c01016
    Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (μEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) μE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile. A pseudoternary phase diagram was delineated in a specified brij-35/ethanol ratio (1:1) to describe the transparent, optically isotropic domain of the as-formulated μE. The water-dilutable μE formulation, comprising an optimum composition of ethyl acetate (18.0%), ethanol (25.0%), brij-35 (25.0%), and water (32.0%), showed a good dissolvability of EZM around 4.8 wt % at pH 5.2. Electron micrographs showed a fine monomodal collection of EZM-loaded μE droplets (∼45 nm) that did not coalesce even after lyophilization, forming small spherical EZM-NPs (∼60 nm). However, the maturity of nanodrug droplets observed through dynamic light scattering suggests the affinity of EZM to the nonpolar microenvironment, which was further supported through peak-to-peak correlation of infrared analysis and fluorescence measurements. Moreover, the release profile of the as-obtained EZM-nanopowder increased significantly >98% in 30 min, which indicates that a reduced drug concentration will be needed for capsules or tablets in the future and can be simply incorporated into the multidosage formulation of EZM.
  2. Nazar MF, Yasir Siddique M, Saleem MA, Zafar M, Nawaz F, Ashfaq M, et al.
    Langmuir, 2018 Sep 11;34(36):10603-10612.
    PMID: 30109940 DOI: 10.1021/acs.langmuir.8b01775
    To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (μE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) μE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated μEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated μEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum μE of formulation A and formulation B, respectively. Each loaded μE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each μE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.
  3. Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, et al.
    Pediatr Nephrol, 2020 Aug;35(8):1529-1561.
    PMID: 32382828 DOI: 10.1007/s00467-020-04519-1
    Idiopathic nephrotic syndrome newly affects 1-3 per 100,000 children per year. Approximately 85% of cases show complete remission of proteinuria following glucocorticoid treatment. Patients who do not achieve complete remission within 4-6 weeks of glucocorticoid treatment have steroid-resistant nephrotic syndrome (SRNS). In 10-30% of steroid-resistant patients, mutations in podocyte-associated genes can be detected, whereas an undefined circulating factor of immune origin is assumed in the remaining ones. Diagnosis and management of SRNS is a great challenge due to its heterogeneous etiology, frequent lack of remission by further immunosuppressive treatment, and severe complications including the development of end-stage kidney disease and recurrence after renal transplantation. A team of experts including pediatric nephrologists and renal geneticists from the International Pediatric Nephrology Association (IPNA), a renal pathologist, and an adult nephrologist have now developed comprehensive clinical practice recommendations on the diagnosis and management of SRNS in children. The team performed a systematic literature review on 9 clinically relevant PICO (Patient or Population covered, Intervention, Comparator, Outcome) questions, formulated recommendations and formally graded them at a consensus meeting, with input from patient representatives and a dietician acting as external advisors and a voting panel of pediatric nephrologists. Research recommendations are also given.
  4. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al.
    Nat Commun, 2016 Feb 24;7:10822.
    PMID: 26905694 DOI: 10.1038/ncomms10822
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links