Displaying all 13 publications

Abstract:
Sort:
  1. Salimon J, Abdullah BM, Salih N
    Lipids Health Dis, 2012;11:74.
    PMID: 22694753 DOI: 10.1186/1476-511X-11-74
    The lipid fraction of rubber (Hevea brasiliensis (kunth. Muell)) seed was extracted and analyzed for toxicological effect. The toxicological compound such as linamarin in rubber seed oil (RSO) extracted using different solvents, such as hexane (RSOh), mixture of chloroform + methanol (RSOchl+mth) and ethanol (RSOeth) were also studied. Various methods analysis such as Fourier transforms infrared spectroscopy (FTIR) and colorimetric methods were carried out to determine the present of such compounds.
  2. Salimon J, Abdullah BM, Salih N
    Chem Cent J, 2011;5:67.
    PMID: 22044685 DOI: 10.1186/1752-153X-5-67
    Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil.
  3. Salimon J, Salih N, Yousif E
    J Oleo Sci, 2011;60(12):613-8.
    PMID: 22123242
    Petroleum is a finite source as well as causing several environmental problems. Therefore petroleum needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources; the use of oleochemicals as biobased lubricants is of significant interest. This article presents a series of chemical modification on oleic acid to yield synthetic biolubricant basestocks. Measuring of density, volatility, cloud point (CP), pour point (PP), flash point (FP), viscosity index (VI), onset temperature (OT) and signal maximum temperature (SMT) was carried out for each compound. Furthermore, the friction and wear properties were measured using high-frequency reciprocating rig (HFRR). The results showed that octadecyl 9-octadecyloxy-10-hydroxyoctadecanoate exhibited the most favorable low-temperature performance (CP %ndash;26°C, PP %ndash;28°C) and the lowest ball wear scan diameter (42 µm) while propyl 9-propyloxy-10-hydroxyoctadecanoate exhibited the higher oxidation stability (OT 156°C).
  4. Japir AA, Salih N, Salimon J
    Turk J Chem, 2021;45(3):585-599.
    PMID: 34385854 DOI: 10.3906/kim-2011-31
    This study involves the quantitative analysis of high free fatty acid crude palm oil, the separation of palmitic acid and synthesis of palm palmitic acid-based bioplastic. Synthesis of dimethyl 2-tetradecylmalonate (DMTDM) using methyl palmitate (MP) with sodium hydride (NaH) in the presence of reactive solvent of dimethyl carbonate (DMC) was carried out. The reaction conditions comprise at a mole ratio of MP: DMC: NaH: dimethylformamide (DMF) (0.1:2:0.25:1) at 60 °C for 14 h with 88.3 ± 1.4% yield. FTIR spectra of DMTDM showed the ester carbonyl group at 1740 cm-1. The polymerization of DMTDM with 1,6-hexandiol or 1,12-dodecandiol was carried out using titanium (IV) isopropoxide Ti(OiPr)4 as the catalyst and reaction time of 24 h. The results showed that the poly(dodecyl 2-tetradecylmalonte) (PDTDM) exhibited good thermal properties compared to poly(hexyl 2-tetradecylmalonte) (PHTDM). The increase of the chain length of diol in PDTDM improved the thermal properties of polyester with glass transition, Tg of 13 ºC and melting point of 51 ºC with a molecular weight of 12508 Da and polydispersity index (PDI) of 1.4. In general, the synthetic polyesters can be used as internalplasticizer in bio-based industry.
  5. Salimon J, Omar TA, Salih N
    ScientificWorldJournal, 2014;2014:906407.
    PMID: 24719581 DOI: 10.1155/2014/906407
    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.
  6. Salimon J, Salih N, Abdullah BM
    J Biomed Biotechnol, 2012;2012:693848.
    PMID: 22346338 DOI: 10.1155/2012/693848
    Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15 μL of H(2)O(2), 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP), flash point (FP), viscosity index (VI), and oxidative stability (OT) were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of -41(°)C. FP of MEOA increased to 128(°)C comparing with 115(°)C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168(°)C, respectively.
  7. Salimon J, Salih N, Abdullah BM
    J Biomed Biotechnol, 2011;2011:196565.
    PMID: 22131799 DOI: 10.1155/2011/196565
    For environmental reasons, a new class of environmentally acceptable and renewable biolubricant based on vegetable oils is available. In this study, oxirane ring opening reaction of monoepoxide linoleic acid (MEOA) was done by nucleophilic addition of oleic acid (OA) with using p-toluene sulfonic acid (PTSA) as a catalyst for synthesis of 9(12)-hydroxy-10(13)-oleoxy-12(9)-octadecanoic acid (HYOOA) and the physicochemical properties of the resulted HYOOA are reported to be used as biolubricant base oils. Optimum conditions of the experiment using D-optimal design to obtain high yield% of HYOOA and lowest OOC% were predicted at OA/MEOA ratio of 0.30 : 1 (w/w), PTSA/MEOA ratio of 0.50 : 1 (w/w), reaction temperature at 110°C, and reaction time at 4.5 h. The results showed that an increase in the chain length of the midchain ester resulted in the decrease of pour point (PP) -51°C, increase of viscosity index (VI) up to 153, and improvement in oxidative stability (OT) to 180.94°C.
  8. Salimon J, Abdullah BM, Yusop RM, Salih N
    Chem Cent J, 2014;8(1):16.
    PMID: 24612780 DOI: 10.1186/1752-153X-8-16
    Vegetable oils have different unique properties owing to their unique chemical structure. Vegetable oils have a greater ability to lubricate and have higher viscosity indices. Therefore, they are being more closely examined as base oil for biolubricants and functional fluids. In spite of their many advantages, vegetable oils suffer from two major drawbacks of inadequate oxidative stability and poor low-temperature properties, which hinder their utilization as biolubricant base oils. Transforming alkene groups in fatty acids to other stable functional groups could improve the oxidative stability, whereas reducing structural uniformity of the oil by attaching alkyl side chains could improve the low-temperature performance. In that light, the epoxidation of unsaturated fatty acids is very interesting as it can provide diverse side chains arising from the mono- or di-epoxidation of the unsaturated fatty acid. Oxirane ring opening by an acid-catalyzed reaction with a suitable reagent provides interesting polyfunctional compounds.
  9. Salimon J, Abdullah BM, Yusop RM, Salih N, Yousif E
    Springerplus, 2013;2:429.
    PMID: 24083099 DOI: 10.1186/2193-1801-2-429
    Biolubricant base oils, 9,12-hydroxy-10,13-oleioxy-12-octadecanoic acid (HYOOA) was synthesized based on the esterification reaction of Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) with oleic acid (OA) and catalyzed by p-Toluenesulfonic acid. The optimum conditions for the experiment using D-optimal design to obtain high yield% of 84.61, conversion% of 83.54 and lowest OOC% of 0.05 were predicted at OA/MEOA ratio of 0.2:1 (mol/mol), PTSA/MEOA ratio of 0.4:1 (mol/mol), reaction temperature at 110°C, and reaction time at 4.5 h. The FTIR peaks of HYOOA indicate the disappearance of the absorption band at 820 cm(-1), which belongs to the oxirane ring. (13)C and (1)H NMR spectra analyses confirmed the result of HYOOA with appearance carbon-ester (C = O) chemical shift at 174.1 ppm and at 4.06 ppm for (13)C and (1)H NMR respectively.
  10. Salih N, Salimon J, Yousif E, Abdullah BM
    Chem Cent J, 2013;7(1):128.
    PMID: 23885790 DOI: 10.1186/1752-153X-7-128
    Plant oils have been investigated as a potential source of environmentally favorable biolubricants because of their biodegradability, renewability and excellent lubrication performance. Low oxidation and thermal stability, poor low-temperature properties and a narrow range of available viscosities, however, limit their potential application as industrial lubricants. The inherent problems of plant oils can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, we will demonstrate how functionalization helps overcome these disadvantages.
  11. Salimon J, Nallathamby N, Salih N, Abdullah BM
    J Autom Methods Manag Chem, 2011;2011:263624.
    PMID: 22007150 DOI: 10.1155/2011/263624
    A study was conveyed to produce estolide ester using ricinoleic acid as the backbone. The ricinoleic acid reacted with saturated fatty acid from C8-C18. These reactions were conducted under vacuum at 60°C for 24 h without solvent. The reaction used acid catalyst, sulphuric acid. The new saturate ricinoleic estolide esters show superior low-temperature properties (-52 ± 0.08°C) and high flash point (>300°C). The yield of the neat estolide esters ranged from 52% to 96%. The viscosity range was 51 ± 0.08 to 86 ± 0.01 cp. These new saturated estolide esters were also compared with saturated branched estolide esters.
  12. Leong XF, Salimon J, Mustafa MR, Jaarin K
    Malays J Med Sci, 2012 Jan;19(1):20-9.
    PMID: 22977371
    BACKGROUND: Oxidative stress is associated with the pathogenesis of cardiovascular diseases. The process of deep-fat frying in dietary cooking oil plays a role in the generation of free radicals. In this study, palm olein heated to 180 °C was tested for its effect on the activity of blood pressure-regulating enzymes and lipid peroxidation.

    METHODS: Forty-two adult male Sprague-Dawley rats were equally assigned into 6 groups.The first group was fed with normal rat chow as the control group, and the subsequent groups were fed with rat chow fortified with 15% weight/weight of the following: fresh palm olein, palm olein heated once, palm olein heated twice, palm olein heated 5 times, or palm olein heated 10 times. The duration of feeding was 6 months. Fatty acid analyses of oil were performed using gas chromatography. Peroxide values were determined using standard titration. Plasma was collected for biochemical analyses.

    RESULTS: Repeatedly heated palm olein increased the levels of peroxide, angiotensin-converting enzyme, and lipid peroxidation as well as reduced the level of heme oxygenase. Fresh palm olein and palm olein heated once had lesser effects on lipid peroxidation and a better effect on the activity of blood pressure-regulating enzymes than repeatedly heated palm olein.

    CONCLUSION: Repeatedly heated palm olein may negatively affect the activity of blood pressure-regulating enzymes and increase lipid peroxidation.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links