Displaying all 12 publications

Abstract:
Sort:
  1. Samad AFA, Kamaroddin MF
    Wiley Interdiscip Rev RNA, 2023 Jan;14(1):e1768.
    PMID: 36437633 DOI: 10.1002/wrna.1768
    MicroRNA (miRNA) is regarded as a prominent genetic regulator, as it can fine-tune an entire biological pathway by targeting multiple target genes. This characteristic makes miRNAs promising therapeutic tools to reinstate cell functions that are disrupted as a consequence of diseases. Currently, miRNA replacement by miRNA mimics and miRNA inhibition by anti-miRNA oligonucleotides are the main approaches to utilizing miRNA molecules for therapeutic purposes. Nevertheless, miRNA-based therapeutics are hampered by major issues such as off-target effects, immunogenicity, and uncertain delivery platforms. Over the past few decades, several innovative approaches have been established to minimize off-target effects, reduce immunostimulation, and provide efficient transfer to the target cells in which these molecules exert their function. Recent achievements have led to the testing of miRNA-based drugs in clinical trials, and these molecules may become next-generation therapeutics for medical intervention. Despite the achievement of exciting milestones, the dosage of miRNA administration remains unclear, and ways to address this issue are proposed. Elucidating the current status of the main factors of therapeutic miRNA would allow further developments and innovations to achieve safe therapeutic tools. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
  2. Samad AFA, Kamaroddin MF, Sajad M
    Adv Nutr, 2021 Feb 01;12(1):197-211.
    PMID: 32862223 DOI: 10.1093/advances/nmaa095
    microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
  3. Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, et al.
    BMC Genomics, 2019 07 16;20(1):586.
    PMID: 31311515 DOI: 10.1186/s12864-019-5954-0
    BACKGROUND: Persicaria minor (kesum) is an herbaceous plant with a high level of secondary metabolite compounds, particularly terpenoids. These terpenoid compounds have well-established roles in the pharmaceutical and food industries. Although the terpenoids of P. minor have been studied thoroughly, the involvement of microRNA (miRNA) in terpenoid regulation remains poorly understood and needs to be explored. In this study, P. minor plants were inoculated with the pathogenic fungus Fusarium oxysporum for terpenoid induction.

    RESULT: SPME GC-MS analysis showed the highest terpenoid accumulation on the 6th day post-inoculation (dpi) compared to the other treatment time points (0 dpi, 3 dpi, and 9 dpi). Among the increased terpenoid compounds, α-cedrene, valencene and β-bisabolene were prominent. P. minor inoculated for 6 days was selected for miRNA library construction using next generation sequencing. Differential gene expression analysis showed that 58 miRNAs belonging to 30 families had significantly altered regulation.
    Among these 58 differentially expressed genes (DEGs), 27 [corrected] miRNAs were upregulated, whereas 31 [corrected] miRNAs were downregulated. Two putative novel pre-miRNAs were identified and validated through reverse transcriptase PCR. Prediction of target transcripts potentially involved in the mevalonate pathway (MVA) was carried out by psRobot software, resulting in four miRNAs: pmi-miR530, pmi-miR6173, pmi-miR6300 and a novel miRNA, pmi-Nov_13. In addition, two miRNAs, miR396a and miR398f/g, were predicted to have their target transcripts in the non-mevalonate pathway (MEP). In addition, a novel miRNA, pmi-Nov_12, was identified to have a target gene involved in green leaf volatile (GLV) biosynthesis. RT-qPCR analysis showed that pmi-miR6173, pmi-miR6300 and pmi-nov_13 were downregulated, while miR396a and miR398f/g were upregulated. Pmi-miR530 showed upregulation at 9 dpi, and dynamic expression was observed for pmi-nov_12. Pmi-6300 and pmi-miR396a cleavage sites were detected through degradome sequence analysis. Furthermore, the relationship between miRNA metabolites and mRNA metabolites was validated using correlation analysis.

    CONCLUSION: Our findings suggest that six studied miRNAs post-transcriptionally regulate terpenoid biosynthesis in P. minor. This regulatory behaviour of miRNAs has potential as a genetic tool to regulate terpenoid biosynthesis in P. minor.

  4. Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, et al.
    BMC Genomics, 2019 08 01;20(1):627.
    PMID: 31370802 DOI: 10.1186/s12864-019-5994-5
    Following publication of the original article [1], the authors reported a number of errors, which are listed in this Correction article. The corrections are marked in bold.
  5. Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, et al.
    Front Plant Sci, 2017;8:565.
    PMID: 28446918 DOI: 10.3389/fpls.2017.00565
    Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions.
  6. Samad AFA, Sajad M, Jani J, Murad AMA, Ismail I
    Data Brief, 2018 Oct;20:555-557.
    PMID: 30197911 DOI: 10.1016/j.dib.2018.08.034
    Degradome sequencing referred as parallel analysis of RNA ends (PARE) by modifying 5'-rapid amplification of cDNA ends (RACE) with deep sequencing method. Deep sequencing of 5' products allow the determination of cleavage sites through the mapping of degradome fragments against small RNAs (miRNA or siRNA) on a large scale. Here, we carried out degradome sequencing in medicinal plant, Persicaria minor, to identify cleavage sites in small RNA libraries in control (mock-inoculated) and Fusarium oxysporum treated plants. The degradome library consisted of both control and treated samples which were pooled together during library preparation and named as D4. The D4 dataset have been deposited at GenBank under accession number SRX3921398, https://www.ncbi.nlm.nih.gov/sra/SRX3921398.
  7. Samad AFA, Nazaruddin N, Murad AMA, Jani J, Zainal Z, Ismail I
    3 Biotech, 2018 Mar;8(3):136.
    PMID: 29479512 DOI: 10.1007/s13205-018-1164-8
    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor (P. minor) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P. minor may develop and update the current public miRNA database.
  8. Nazaruddin N, Samad AFA, Sajad M, Jani J, Zainal Z, Ismail I
    Genom Data, 2017 Jun;12:157-158.
    PMID: 28560166 DOI: 10.1016/j.gdata.2017.05.011
    Persicaria minor (Kesum) is an important medicinal plant with high level of secondary metabolite contents, especially, terpenoids and flavonoids. Previous studies have revealed that application of exogenous phytohormone could increase secondary metabolite contents of the plant. MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in various biological processes. In order to explore the possible role of miRNA in the regulation of these phytohormones signaling pathway and uncovering their potential correlation, we, for the first time, have generated the smallRNA library of Kesum plant. The library was developed in response to methyl jasmonate (MJ) and abscisic acid (ABA) treatment by using next-generation sequencing technology. Raw reads have been deposited to SRA database with the accession numbers, SRX2655642 and SRX2655643 (MJ-treated), SRXSRX2655644 and SRX2655645 (ABA-treated) and SRX2655646and SRX2655647 (Control).
  9. Samad AFA, Nazaruddin N, Sajad M, Jani J, Murad AMA, Zainal Z, et al.
    Genom Data, 2017 Sep;13:3-4.
    PMID: 28560169 DOI: 10.1016/j.gdata.2017.05.014
    Persicaria minor (kesum) is an important medicinal plant and commonly found in southeast countries; Malaysia, Thailand, Indonesia, and Vietnam. This plant is enriched with a variety of secondary metabolites (SMs), and among these SMs, terpenoids are in high abundance. Terpenoids are comprised of many valuable biomolecules which have well-established role in agriculture and pharmaceutical industry. In P. minor, for the first time, we have generated small RNAs data sets, which can be used as tool in deciphering their roles in terpenoid biosynthesis pathways. Fungal pathogen, Fusarium oxysporum was used as elicitor to trigger SMs biosynthesis in P. minor. Raw reads and small RNA analysis data have already been deposited at GenBank under the accessions; SRX2645684 (Fusarium-treated), SRX2645685 (Fusarium-treated), SRX2645686 (mock-infected), and SRX2645687 (mock-infected).
  10. Saidon NA, Wagiran A, Samad AFA, Mohd Salleh F, Mohamed F, Jani J, et al.
    Genes (Basel), 2023 Mar 11;14(3).
    PMID: 36980969 DOI: 10.3390/genes14030697
    Nepentheceae, the most prominent carnivorous family in the Caryophyllales order, comprises the Nepenthes genus, which has modified leaf trap characteristics. Although most Nepenthes species have unique morphologies, their vegetative stages are identical, making identification based on morphology difficult. DNA barcoding is seen as a potential tool for plant identification, with small DNA segments amplified for species identification. In this study, three barcode loci; ribulose-bisphosphate carboxylase (rbcL), intergenic spacer 1 (ITS1) and intergenic spacer 2 (ITS2) and the usefulness of the ITS1 and ITS2 secondary structure for the molecular identification of Nepenthes species were investigated. An analysis of barcodes was conducted using BLASTn, pairwise genetic distance and diversity, followed by secondary structure prediction. The findings reveal that PCR and sequencing were both 100% successful. The present study showed the successful amplification of all targeted DNA barcodes at different sizes. Among the three barcodes, rbcL was the least efficient as a DNA barcode compared to ITS1 and ITS2. The ITS1 nucleotide analysis revealed that the ITS1 barcode had more variations compared to ITS2. The mean genetic distance (K2P) between them was higher for interspecies compared to intraspecies. The results showed that the DNA barcoding gap existed among Nepenthes species, and differences in the secondary structure distinguish the Nepenthes. The secondary structure generated in this study was found to successfully discriminate between the Nepenthes species, leading to enhanced resolutions.
  11. Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, Zainal Z, et al.
    Plants (Basel), 2023 Feb 03;12(3).
    PMID: 36771753 DOI: 10.3390/plants12030669
    The application of miRNA mimic technology for silencing mature miRNA began in 2007. This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1) gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted to understand the molecular mimic mechanism and to improve the efficiency of this technology. As a result, several mimic tools have been developed: target mimicry (TM), short tandem target mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability and effectiveness in decoying miRNA. This review discusses the application of STTM technology on the loss-of-function studies of miRNA and members from diverse plant species. A modified STTM approach for studying the function of miRNA with spatial-temporal expression under the control of specific promoters is further explored. STTM technology will enhance our understanding of the miRNA activity in plant-tissue-specific development and stress responses for applications in improving plant traits via miRNA regulation.
  12. Othman SMIS, Mustaffa AF, Mohd Zahid NII, Che-Othman MH, Samad AFA, Goh HH, et al.
    Plant Physiol Biochem, 2024 Feb;207:108387.
    PMID: 38266565 DOI: 10.1016/j.plaphy.2024.108387
    Plants have developed diverse physical and chemical defence mechanisms to ensure their continued growth and well-being in challenging environments. Plants also have evolved intricate molecular mechanisms to regulate their responses to biotic stress. Non-coding RNA (ncRNA) plays a crucial role in this process that affects the expression or suppression of target transcripts. While there have been numerous reviews on the role of molecules in plant biotic stress, few of them specifically focus on how plant ncRNAs enhance resistance through various mechanisms against different pathogens. In this context, we explored the role of ncRNA in exhibiting responses to biotic stress endogenously as well as cross-kingdom regulation of transcript expression. Furthermore, we address the interplay between ncRNAs, which can act as suppressors, precursors, or regulators of other ncRNAs. We also delve into the regulation of ncRNAs in response to attacks from different organisms, such as bacteria, viruses, fungi, nematodes, oomycetes, and insects. Interestingly, we observed that diverse microorganisms interact with distinct ncRNAs. This intricacy leads us to conclude that each ncRNA serves a specific function in response to individual biotic stimuli. This deeper understanding of the molecular mechanisms involving ncRNAs in response to biotic stresses enhances our knowledge and provides valuable insights for future research in the field of ncRNA, ultimately leading to improvements in plant traits.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links