Displaying publications 1 - 20 of 38 in total

  1. Sambanthamurthi R, Rajanaidu N, Hasnah Parman S
    Biochem Soc Trans, 2000 Dec;28(6):769-70.
    PMID: 11171201
    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value.
  2. Sambanthamurthi R, Sundram K, Tan Y
    Prog Lipid Res, 2000 Nov;39(6):507-58.
    PMID: 11106812
  3. Sundram K, Sambanthamurthi R, Tan YA
    Asia Pac J Clin Nutr, 2003;12(3):355-62.
    PMID: 14506001
    The palm fruit (Elaies guineensis) yields palm oil, a palmitic-oleic rich semi solid fat and the fat-soluble minor components, vitamin E (tocopherols, tocotrienols), carotenoids and phytosterols. A recent innovation has led to the recovery and concentration of water-soluble antioxidants from palm oil milling waste, characterized by its high content of phenolic acids and flavonoids. These natural ingredients pose both challenges and opportunities for the food and nutraceutical industries. Palm oil's rich content of saturated and monounsaturated fatty acids has actually been turned into an asset in view of current dietary recommendations aimed at zero trans content in solid fats such as margarine, shortenings and frying fats. Using palm oil in combination with other oils and fats facilitates the development of a new generation of fat products that can be tailored to meet most current dietary recommendations. The wide range of natural palm oil fractions, differing in their physico-chemical characteristics, the most notable of which is the carotenoid-rich red palm oil further assists this. Palm vitamin E (30% tocopherols, 70% tocotrienols) has been extensively researched for its nutritional and health properties, including antioxidant activities, cholesterol lowering, anti-cancer effects and protection against atherosclerosis. These are attributed largely to its tocotrienol content. A relatively new output from the oil palm fruit is the water-soluble phenolic-flavonoid-rich antioxidant complex. This has potent antioxidant properties coupled with beneficial effects against skin, breast and other cancers. Enabled by its water solubility, this is currently being tested for use as nutraceuticals and in cosmetics with potential benefits against skin aging. A further challenge would be to package all these palm ingredients into a single functional food for better nutrition and health.
  4. Leow SS, Fairus S, Sambanthamurthi R
    Crit Rev Food Sci Nutr, 2022;62(32):9076-9092.
    PMID: 34156318 DOI: 10.1080/10408398.2021.1939648
    The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
  5. Ji X, Usman A, Razalli NH, Sambanthamurthi R, Gupta SV
    Anticancer Res, 2015 Jan;35(1):97-106.
    PMID: 25550539
    Oil palm phenolics (OPP) or Palm Juice (PJ), a water soluble extract from the palm fruit (Elaies guineensis) has been documented to have anti-carcinogenic activities in various cancer types.
  6. Bolsinger J, Pronczuk A, Sambanthamurthi R, Hayes KC
    J Nutr Sci, 2014;3:e5.
    PMID: 25191613 DOI: 10.1017/jns.2014.3
    With the increasing incidence of metabolic diseases, numerous bioactive phytochemicals have been proffered in the dietary prevention of these conditions. Palm fruit juice (PFJ) possesses bioactive phenolic compounds (referred to as oil palm phenolics; OPP) that may deter diabetes. The objective of the present experiments was to document the degree to which PFJ reduces diabetes symptoms in a variety of circumstances in the Nile rat (Arvicanthis niloticus), a novel model for carbohydrate-induced type 2 diabetes (type 2 diabetes mellitus; T2DM) and the metabolic syndrome. Wild-type male Nile rats (n 100) were fed laboratory chow or semi-purified diabetogenic diets in five experiments lasting 4-36 weeks. PFJ was provided as a drink or mixed into the diet to provide OPP intakes from 170 to 720 mg gallic acid equivalents/kg body weight per d. Body weight and random and fasting blood glucose were assessed at different time points, and were analysed along with terminal fasting organ weights, insulin, plasma and liver lipids as measures of diabetes progression. PFJ proved to be anti-hyperglycaemic and anti-lipaemic in all experiments relative to untreated controls, delaying T2DM onset and even reversing advancing diabetes. Protection by PFJ was directly related to its OPP content, and no negative effects on energy intake or growth were observed. PFJ was effective both as a drink and mixed into the diet. Results suggest that PFJ may slow the rate of glucose absorption, reduce insulin resistance and/or enhance insulin secretion.
  7. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    J Nutrigenet Nutrigenomics, 2013;6(6):305-26.
    PMID: 24642698 DOI: 10.1159/000357948
    Plant phenolics can inhibit, retard or reverse carcinogenesis, and may thus help prevent or treat cancer. Oil palm phenolics (OPP) previously showed anti-tumour activities in vivo via a cytostatic mechanism at 1,500 ppm gallic acid equivalent. Here, we report other possible molecular mechanisms by which this extract attenuates cancer, especially those concerning the immune response.
  8. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    BMC Genomics, 2011;12:432.
    PMID: 21864415 DOI: 10.1186/1471-2164-12-432
    Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models.
  9. Leow SS, Sekaran SD, Tan Y, Sundram K, Sambanthamurthi R
    Nutr Neurosci, 2013 Sep;16(5):207-17.
    PMID: 23433062 DOI: 10.1179/1476830512Y.0000000047
    Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties.
  10. Leow SS, Bolsinger J, Pronczuk A, Hayes KC, Sambanthamurthi R
    Genes Nutr, 2016;11:29.
    PMID: 27795741
    BACKGROUND: The Nile rat (NR, Arvicanthis niloticus) is a model of carbohydrate-induced type 2 diabetes mellitus (T2DM) and the metabolic syndrome. A previous study found that palm fruit juice (PFJ) delayed or prevented diabetes and in some cases even reversed its early stages in young NRs. However, the molecular mechanisms by which PFJ exerts these anti-diabetic effects are unknown. In this study, the transcriptomic effects of PFJ were studied in young male NRs, using microarray gene expression analysis.

    METHODS: Three-week-old weanling NRs were fed either a high-carbohydrate diet (%En from carbohydrate/fat/protein = 70:10:20, 16.7 kJ/g; n = 8) or the same high-carbohydrate diet supplemented with PFJ (415 ml of 13,000-ppm gallic acid equivalent (GAE) for a final concentration of 5.4 g GAE per kg diet or 2.7 g per 2000 kcal; n = 8). Livers were obtained from these NRs for microarray gene expression analysis using Illumina MouseRef-8 Version 2 Expression BeadChips. Microarray data were analysed along with the physiological parameters of diabetes.

    RESULTS: Compared to the control group, 71 genes were up-regulated while 108 were down-regulated in the group supplemented with PFJ. Among hepatic genes up-regulated were apolipoproteins related to high-density lipoproteins (HDL) and genes involved in hepatic detoxification, while those down-regulated were related to insulin signalling and fibrosis.

    CONCLUSION: The results obtained suggest that the anti-diabetic effects of PFJ may be due to mechanisms other than an increase in insulin secretion.

  11. Parveez GK, Rasid OA, Masani MY, Sambanthamurthi R
    Plant Cell Rep, 2015 Apr;34(4):533-43.
    PMID: 25480400 DOI: 10.1007/s00299-014-1722-4
    Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.
  12. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    Eur J Nutr, 2013 Mar;52(2):443-56.
    PMID: 22527284 DOI: 10.1007/s00394-012-0346-0
    BACKGROUND: Water-soluble phenolics from the oil palm possess significant biological properties.

    PURPOSE: In this study, we aimed to discover the role of oil palm phenolics (OPP) in influencing the gene expression changes caused by an atherogenic diet in mice.

    METHODS: We fed mice with either a low-fat normal diet (14.6 % kcal/kcal fat) with distilled water, or a high-fat atherogenic diet (40.5 % kcal/kcal fat) containing cholesterol. The latter group was given either distilled water or OPP. We harvested major organs such as livers, spleens and hearts for microarray gene expression profiling analysis. We determined how OPP changed the gene expression profiles caused by the atherogenic diet. In addition to gene expression studies, we carried out physiological observations, blood hematology as well as clinical biochemistry, cytokine profiling and antioxidant assays on their blood sera.

    RESULTS: Using Illumina microarrays, we found that the atherogenic diet caused oxidative stress, inflammation and increased turnover of metabolites and cells in the liver, spleen and heart. In contrast, OPP showed signs of attenuating these effects. The extract increased unfolded protein response in the liver, attenuated antigen presentation and processing in the spleen and up-regulated antioxidant genes in the heart. Real-time quantitative reverse transcription-polymerase chain reaction validated the microarray gene expression fold changes observed. Serum cytokine profiling showed that OPP attenuated inflammation by modulating the Th1/Th2 axis toward the latter. OPP also increased serum antioxidant activity to normal levels.

    CONCLUSION: This study suggests that OPP may possibly attenuate atherosclerosis and other forms of cardiovascular disease.

  13. Leow SS, Luu A, Shrestha S, Hayes KC, Sambanthamurthi R
    Exp Gerontol, 2018 Mar 15;106:198-221.
    PMID: 29550564 DOI: 10.1016/j.exger.2018.03.013
    Palm fruit juice (PFJ) containing oil palm phenolics is obtained as a by-product from oil palm (Elaeis guineensis) fruit milling. It contains shikimic acid, soluble fibre and various phenolic acids including p-hydroxybenzoic acid and three caffeoylshikimic acid isomers. PFJ has also demonstrated beneficial health properties in various biological models. Increasing concentrations of PFJ and different PFJ fractions were used to assess growth dynamics and possible anti-ageing properties in fruit flies (Drosophila melanogaster) genotype w1118. Microarray gene expression analysis was performed on whole fruit fly larvae and their fat bodies, after the larvae were fed a control Standard Brandeis Diet (SBD) with or without PFJ. Transcripts from Affymetrix GeneChips were utilised to identify the possible mechanisms involved, with genes having fold changes > |1.30| and p 
  14. Masani MY, Noll GA, Parveez GK, Sambanthamurthi R, Prüfer D
    PLoS One, 2014;9(5):e96831.
    PMID: 24821306 DOI: 10.1371/journal.pone.0096831
    Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants.
  15. Masani MY, Noll G, Parveez GK, Sambanthamurthi R, Prüfer D
    Plant Sci, 2013 Sep;210:118-27.
    PMID: 23849119 DOI: 10.1016/j.plantsci.2013.05.021
    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.
  16. Fairus S, Leow SS, Mohamed IN, Tan YA, Sundram K, Sambanthamurthi R
    Sci Rep, 2018 05 29;8(1):8217.
    PMID: 29844318 DOI: 10.1038/s41598-018-26384-7
    Plant phenolics are being increasingly consumed globally with limited scientific and clinical evidence pertaining to safety and efficacy. The oil palm fruit contains a cocktail of phenolics, and palm oil production results in high volumes of aqueous by-products enriched in phenolics and bioactives. Several lines of evidence from in vitro and in vivo animal studies confirmed that the aqueous extract enriched in phenolics and other bioactives collectively known as oil palm phenolics (OPP) is safe and has potent bioactivity. A phase one clinical trial was conducted to evaluate the safety and effects of OPP in healthy volunteers. In this single-blind trial, 25 healthy human volunteers were supplemented with 450 mg gallic acid equivalent (GAE)/day of OPP or control treatments for a 60-day period. Fasting blood and urine samples were collected at days 1, 30 and 60. Medical examination was performed during these trial interventions. All clinical biochemistry profiles observed throughout the control and OPP treatment period were in the normal range with no major adverse effect (AE) or serious adverse effect (SAE) observed. Additionally, OPP supplementation resulted in improvement of total cholesterol and LDL-C levels, compared to the control treatment. The outcomes support our previous observations that OPP is safe and may have a protective role in reducing cholesterol levels.
  17. Weinberg RP, Koledova VV, Subramaniam A, Schneider K, Artamonova A, Sambanthamurthi R, et al.
    Sci Rep, 2020 Feb 13;10(1):2878.
    PMID: 32051499 DOI: 10.1038/s41598-020-60010-9
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  18. Leow SS, Lee WK, Khoo JS, Teoh S, Hoh CC, Fairus S, et al.
    Mol Biol Rep, 2020 Dec;47(12):9409-9427.
    PMID: 33222119 DOI: 10.1007/s11033-020-06003-3
    The Nile rat (Arvicanthis niloticus) is a novel diurnal carbohydrate-sensitive rodent useful for studies on type 2 diabetes mellitus (T2DM) and the metabolic syndrome. Hepatic responses to T2DM and any interventions thereof can be evaluated via transcriptomic gene expression analysis. However, the study of gene expression via real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) requires identification of stably expressed reference genes for accurate normalisation. This study describes the evaluation and identification of stable reference genes in the livers from Control Nile rats as well as those supplemented with Water-Soluble Palm Fruit Extract, which has been previously shown to attenuate T2DM in this animal model. Seven genes identified as having stable expression in RNA-Sequencing transcriptome analysis were chosen for verification using real-time RT-qPCR. Six commonly used reference genes from previous literature and two genes from a previous microarray gene expression study in Nile rats were also evaluated. The expression data of these 15 candidate reference genes were analysed using the RefFinder software which incorporated analyses performed by various algorithms. The Hpd, Pnpla6 and Vpp2 genes were identified as the most stable across the 36 samples tested. Their applicability was demonstrated through the normalisation of the gene expression profiles of two target genes, Cela1 and Lepr. In conclusion, three novel reference genes which can be used for robust normalisation of real-time RT-qPCR data were identified, thereby facilitating future hepatic gene expression studies in the Nile rat.
  19. Weinberg RP, Koledova VV, Shin H, Park JH, Tan YA, Sinskey AJ, et al.
    Int J Alzheimers Dis, 2018;2018:7608038.
    PMID: 29666700 DOI: 10.1155/2018/7608038
    Alzheimer's disease is a severe neurodegenerative disease characterized by the aggregation of amyloid-β peptide (Aβ) into toxic oligomers which activate microglia and astrocytes causing acute neuroinflammation. Multiple studies show that the soluble oligomers of Aβ42 are neurotoxic and proinflammatory, whereas the monomers and insoluble fibrils are relatively nontoxic. We show that Aβ42 aggregation is inhibited in vitro by oil palm phenolics (OPP), an aqueous extract from the oil palm tree (Elaeis guineensis). The data shows that OPP inhibits stacking of β-pleated sheets, which is essential for oligomerization. We demonstrate the inhibition of Aβ42 aggregation by (1) mass spectrometry; (2) Congo Red dye binding; (3) 2D-IR spectroscopy; (4) dynamic light scattering; (5) transmission electron microscopy; and (6) transgenic yeast rescue assay. In the yeast rescue assay, OPP significantly reduces the cytotoxicity of aggregating neuropeptides in yeast genetically engineered to overexpress these peptides. The data shows that OPP inhibits (1) the aggregation of Aβ into oligomers; (2) stacking of β-pleated sheets; and (3) fibrillar growth and coalescence. These inhibitory effects prevent the formation of neurotoxic oligomers and hold potential as a means to reduce neuroinflammation and neuronal death and thereby may play some role in the prevention or treatment of Alzheimer's disease.
  20. Weinberg RP, Koledova VV, Subramaniam A, Schneider K, Artamonova A, Sambanthamurthi R, et al.
    Sci Rep, 2019 Dec 09;9(1):18625.
    PMID: 31819070 DOI: 10.1038/s41598-019-54461-y
    Tyrosine hydroxylase (TH) catalyzes the hydroxylation of L-tyrosine to L-DOPA. This is the rate-limiting step in the biosynthesis of the catecholamines - dopamine (DA), norepinephrine (NE), and epinephrine (EP). Catecholamines (CA) play a key role as neurotransmitters and hormones. Aberrant levels of CA are associated with multiple medical conditions, including Parkinson's disease. Palm Fruit Bioactives (PFB) significantly increased the levels of tyrosine hydroxylase in the brain of the Nile Grass rat (NGR), a novel and potentially significant finding, unique to PFB among known botanical sources. Increases were most pronounced in the basal ganglia, including the caudate-putamen, striatum and substantia nigra. The NGR represents an animal model of diet-induced Type 2 Diabetes Mellitus (T2DM), exhibiting hyperglycemia, hyperinsulinemia, and insulin resistance associated with hyperphagia and accelerated postweaning weight gain induced by a high-carbohydrate diet (hiCHO). The PFB-induced increase of TH in the basal ganglia of the NGR was documented by immuno-histochemical staining (IHC). This increase in TH occurred equally in both diabetes-susceptible and diabetes-resistant NGR fed a hiCHO. PFB also stimulated growth of the colon microbiota evidenced by an increase in cecal weight and altered microbiome.  The metabolites of colon microbiota, e.g. short-chain fatty acids, may influence the brain and behavior significantly.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links