Displaying all 6 publications

Abstract:
Sort:
  1. Samsulrizal NH, Khadzran KS, Shaarani SH, Noh AL, Sundram TC, Naim MA, et al.
    Data Brief, 2020 Feb;28:104811.
    PMID: 31871974 DOI: 10.1016/j.dib.2019.104811
    Stevia rebaudiana (S. rebaudiana) is a herbaceous and perennial plant belonging to Asteraceae family. The genus stevia is well known as a natural producer of sweetener comprising non-caloric and non-carcinogenic steviol glycosides. In recent years, the capability in producing natural sweetner has increased the demand for S. rebaudiana as substitute of processed sugars. Flowering phase of S. rebaudiana has shown to affect the content of steviol glycosides in the leaves. Steviol glycosides level is the highest at the time of flower bud formation and lowest at time preceding and following flower bud formation. Therefore, sequencing and analysing the genes that are involved in flowering phase will provide platform for gene manipulation in increasing steviol glycosides content. The Stevia transcriptome data that include two stages of growth (before flowering and after flowering), were obtained using Illumina RNA-seq technology and can be accessed at NCBI Sequence Read Archive under Accession No. SRX6362785 and SRX6362784.
  2. Sabaghian S, Braschi G, Vannini L, Patrignani F, Samsulrizal NH, Lanciotti R
    Microorganisms, 2021 Dec 13;9(12).
    PMID: 34946182 DOI: 10.3390/microorganisms9122582
    Pathogenic fungi belonging to the genera Botrytis, Phaeomoniella, Fusarium, Alternaria and Aspergillus are responsible for vines diseases that affect the growth, grapevine yield and organoleptic quality. Among innovative strategies for in-field plant disease control, one of the most promising is represented by biocontrol agents, including wild epiphytic yeast strains of grapevine berries. Twenty wild yeast, isolated and molecularly identified from three different Malaysian regions (Perlis, Perak and Pahang), were evaluated in a preliminary screening test on agar to select isolates with inhibition against Botrytis cinerea. On the basis of the results, nine yeasts belonging to genera Hanseniaspora, Starmerella, Metschnikowia, Candida were selected and then tested against five grape berry pathogens: Aspergillus carbonarius, Aspergillus ochraceus, Fusarium oxysporum, Alternaria alternata and Phaeomoniella chlamydospora.Starmerella bacillaris FE08.05 and Metschnikowia pulcherrima GP8 and Hanseniaspora uvarum GM19 showed the highest effect on inhibiting mycelial growth, which ranged between 15.1 and 4.3 mm for the inhibition ring. The quantitative analysis of the volatile organic compound profiles highlighted the presence of isoamyl and phenylethyl alcohols and an overall higher presence of low-chain fatty acids and volatile ethyl esters. The results of this study suggest that antagonist yeasts, potentially effective for the biological control of pathogenic moulds, can be found among the epiphytic microbiota associated with grape berries.
  3. Tamizi AA, Md-Yusof AA, Mohd-Zim NA, Nazaruddin NH, Sekeli R, Zainuddin Z, et al.
    Mol Biol Rep, 2023 Nov;50(11):9353-9366.
    PMID: 37819494 DOI: 10.1007/s11033-023-08842-2
    BACKGROUND: Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming.

    METHODS AND RESULTS: In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants.

    CONCLUSION: This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.

  4. Samsulrizal NH, Khadzran KS, Meenakshi Sundram TC, Zainuddin Z, Shaarani SHN, Azmi NSA, et al.
    Turk J Biol, 2021;45(3):314-322.
    PMID: 34377055 DOI: 10.3906/biy-2103-3
    Stevia rebaudiana is a medicinal plant recommended to diabetic or obese patients as an alternative sweetener owing to its low-calorie property. Previous studies have found that the stevioside level is highest at the time of flower bud formation and lowest at the time of preceding and following flower bud formation. Hence, this study aims to identify the genes involved in the flowering of local S. rebaudiana accession MS007 by investigating the transcriptomic data of two stages of growth, before flowering (BF) and after flowering (AF) that were deposited under accession number SRX6362785 and SRX6362784 at the NCBI SRA database. The transcriptomic study managed to annotate 108299 unigenes of S. rebaudiana with 8871 and 9832 genes that were differentially expressed in BF and AF samples, respectively. These genes involved in various metabolic pathways related to flower development, response to stimulus as well as photosynthesis. Pheophorbide A oxygenase ( PAO ), eukaryotic translation initiation factor 3 subunit E ( TIF3E1 ), and jasmonate ZIM domain-containing protein 1 ( JAZ1 ) were found to be involved in the flower development. The outcome of this study will help further research in the manipulation of the flowering process, especially in the breeding programme to develop photo-insensitive Stevia plant.
  5. Noor YM, Samsulrizal NH, Jema'on NA, Low KO, Ramli AN, Alias NI, et al.
    Gene, 2014 Jul 25;545(2):253-61.
    PMID: 24811681 DOI: 10.1016/j.gene.2014.05.012
    Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.
  6. Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al.
    Plant Physiol, 2019 02;179(2):544-557.
    PMID: 30459263 DOI: 10.1104/pp.18.01187
    Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links