Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Maresova P, Penhaker M, Selamat A, Kuca K
    Ther Clin Risk Manag, 2015;11:1505-14.
    PMID: 26491337 DOI: 10.2147/TCRM.S88574
    The high quality of public health improves not only healthy life expectancy, but also the productivity of labor. The most important part of the health care sector is the medical technology industry. The aim of this study is to analyze the current situation in the medical device industry in Europe, its potential strengths and weaknesses in the context of topical economic and demographic development. The contribution specifies an analysis of the economic state of the medical device industry in the context of demographic development of European Union's macroeconomic indicators and views of experts in the field of medical device development, concerning the opportunities for entities involved in the medical device market. There is fierce competition on the European market. The innovative activity is stable and well regulated by responsible authorities. Worldwide, the medical device market is expected to grow.
  2. Kubicek J, Penhaker M, Krejcar O, Selamat A
    Sensors (Basel), 2021 Jan 27;21(3).
    PMID: 33513910 DOI: 10.3390/s21030847
    There are various modern systems for the measurement and consequent acquisition of valuable patient's records in the form of medical signals and images, which are supposed to be processed to provide significant information about the state of biological tissues [...].
  3. Kacetl J, Marešová P, Maskuriy R, Selamat A
    Risk Manag Healthc Policy, 2020;13:2125-2148.
    PMID: 33116992 DOI: 10.2147/RMHP.S260641
    Background: Rare or orphan diseases have become an important target of healthcare activities all over the world. The study aims to identify ethical questions linked to rare diseases and orphan drugs and ethical principles or approaches applied to solve them.

    Methods: Relevant peer-reviewed articles were identified by means of a systematic review. The literature was searched from 20 May 2020 to 20 June 2020. The search included the databases PubMed, Scopus and Web of Science (2010 - April 2020). A total of 4,139 papers related to rare diseases were identified; with 1,205 papers obtained from Scopus; 2,476 papers from PubMed; and 458 from Web of Science with keyword search "ethics" AND "rare" AND "disease", "ethical" AND "orphan", "ethical" AND "orphan" AND "drug", and "ethical" AND "rare" AND "disease". Finally, XX studies were chosen for further analysis.

    Results: The main findings reveal five main ethical issues. The most essential one shows that funding research and development in the field of orphan drugs poses an almost impossible dilemma. Other issues include the significance of non-economic values like compassion and beneficence in decision-making related to orphan drugs and rare diseases; the identification of limits to labelling diseases as rare; barriers to global, supranational and international cooperation; and last but not least, determining and establishing panels of decision-makers.

    Conclusions: A strictly global approach would be the most appropriate way to deal with rare diseases. Nonetheless, international, let alone global, cooperation seems to be completely beyond the reach of the current international community, although the EU, for instance, has a centralized procedure for labelling orphan drugs. This deficit in international cooperation can be partly explained by the fact that the current technologically globalized world still lacks globally accepted ethical values and rules. This is further aggravated by unresolved international and intercultural conflicts. In addition, the sub-interests of various parties as well as the lack of desire to deal with other people's problems need to be taken into account. The aforementioned problems are difficult to avoid. Nevertheless, let us be cautiously optimistic. At least, there are people who raise ethical questions about rare diseases and orphan drugs.

  4. Brida P, Krejcar O, Selamat A, Kertesz A
    Sensors (Basel), 2021 Sep 01;21(17).
    PMID: 34502784 DOI: 10.3390/s21175890
    The recent development in wireless networks and devices leads to novel services that will utilize wireless communication on a new level [...].
  5. Hakim MA, Juraimi AS, Hanafi MM, Selamat A
    J Environ Biol, 2013 Sep;34(5):847-56.
    PMID: 24558797
    A survey was conducted at 100 different rice fields in coastal areas of West Malaysia to identify most common and prevalent weeds associated with rice. Fields surveyed were done according to the quantitative survey method by using 0.5m x 0.5m size quadrate with 20 samples from each field. A total of 53 different weed species belong to 18 families were identified of which 32 annual and 21 perennial; 12 grassy, 13 sedges and 28 broadleaved weeds. Based on relative abundance the most prevalent and abundant weed species were selected in the coastal rice field. Among the 10 most abundant weed species, there were four grasses viz. Echinochloa crusgalli, Leptochloo chinensis, Echinochloo colona, Oryza sotivo L. (weedy rice).; four sedges viz. Fimbristylis miliacea, Cyperus iria, Cyperus difformis, Scirpus grossus and two broadleaved weeds viz. Sphenocleo zeylonica, Jussiaea linifolio. Leptochloa chinensis, E. crusgalli, F. miliocea, E. colona were more prevalent and abundant species out of the 10 most dominant weed species in the coastal rice field of Peninsular Malaysia.
  6. Zainal-Abideen M, Aris A, Yusof F, Abdul-Majid Z, Selamat A, Omar SI
    Water Sci Technol, 2012;65(3):496-503.
    PMID: 22258681 DOI: 10.2166/wst.2012.561
    In this study of coagulation operation, a comparison was made between the optimum jar test values for pH, coagulant and coagulant aid obtained from traditional methods (an adjusted one-factor-at-a-time (OFAT) method) and with central composite design (the standard design of response surface methodology (RSM)). Alum (coagulant) and polymer (coagulant aid) were used to treat a water source with very low pH and high aluminium concentration at Sri-Gading water treatment plant (WTP) Malaysia. The optimum conditions for these factors were chosen when the final turbidity, pH after coagulation and residual aluminium were within 0-5 NTU, 6.5-7.5 and 0-0.20 mg/l respectively. Traditional and RSM jar tests were conducted to find their respective optimum coagulation conditions. It was observed that the optimum dose for alum obtained through the traditional method was 12 mg/l, while the value for polymer was set constant at 0.020 mg/l. Through RSM optimization, the optimum dose for alum was 7 mg/l and for polymer was 0.004 mg/l. Optimum pH for the coagulation operation obtained through traditional methods and RSM was 7.6. The final turbidity, pH after coagulation and residual aluminium recorded were all within acceptable limits. The RSM method was demonstrated to be an appropriate approach for the optimization and was validated by a further test.
  7. Kolda L, Krejcar O, Selamat A, Kuca K, Fadeyi O
    Sensors (Basel), 2019 Aug 26;19(17).
    PMID: 31455045 DOI: 10.3390/s19173709
    Biometric verification methods have gained significant popularity in recent times, which has brought about their extensive usage. In light of theoretical evidence surrounding the development of biometric verification, we proposed an experimental multi-biometric system for laboratory testing. First, the proposed system was designed such that it was able to identify and verify a user through the hand contour, and blood flow (blood stream) at the upper part of the hand. Next, we detailed the hard and software solutions for the system. A total of 40 subjects agreed to be a part of data generation team, which produced 280 hand images. The core of this paper lies in evaluating individual metrics, which are functions of frequency comparison of the double type faults with the EER (Equal Error Rate) values. The lowest value was measured for the case of the modified Hausdorff distance metric - Maximally Helicity Violating (MHV). Furthermore, for the verified biometric characteristics (Hamming distance and MHV), appropriate and suitable metrics have been proposed and experimented to optimize system precision. Thus, the EER value for the designed multi-biometric system in the context of this work was found to be 5%, which proves that metrics consolidation increases the precision of the multi-biometric system. Algorithms used for the proposed multi-biometric device shows that the individual metrics exhibit significant accuracy but perform better on consolidation, with a few shortcomings.
  8. Mambou SJ, Maresova P, Krejcar O, Selamat A, Kuca K
    Sensors (Basel), 2018 Aug 25;18(9).
    PMID: 30149621 DOI: 10.3390/s18092799
    Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.
  9. Kirimtat A, Krejcar O, Selamat A, Herrera-Viedma E
    BMC Bioinformatics, 2020 Mar 11;21(Suppl 2):88.
    PMID: 32164529 DOI: 10.1186/s12859-020-3355-7
    BACKGROUND: In biomedicine, infrared thermography is the most promising technique among other conventional methods for revealing the differences in skin temperature, resulting from the irregular temperature dispersion, which is the significant signaling of diseases and disorders in human body. Given the process of detecting emitted thermal radiation of human body temperature by infrared imaging, we, in this study, present the current utility of thermal camera models namely FLIR and SEEK in biomedical applications as an extension of our previous article.

    RESULTS: The most significant result is the differences between image qualities of the thermograms captured by thermal camera models. In other words, the image quality of the thermal images in FLIR One is higher than SEEK Compact PRO. However, the thermal images of FLIR One are noisier than SEEK Compact PRO since the thermal resolution of FLIR One is 160 × 120 while it is 320 × 240 in SEEK Compact PRO.

    CONCLUSION: Detecting and revealing the inhomogeneous temperature distribution on the injured toe of the subject, we, in this paper, analyzed the imaging results of two different smartphone-based thermal camera models by making comparison among various thermograms. Utilizing the feasibility of the proposed method for faster and comparative diagnosis in biomedical problems is the main contribution of this study.

  10. Cimr D, Fujita H, Tomaskova H, Cimler R, Selamat A
    Comput Methods Programs Biomed, 2023 Feb;229:107277.
    PMID: 36463672 DOI: 10.1016/j.cmpb.2022.107277
    BACKGROUND AND OBJECTIVES: Nowadays, an automated computer-aided diagnosis (CAD) is an approach that plays an important role in the detection of health issues. The main advantages should be in early diagnosis, including high accuracy and low computational complexity without loss of the model performance. One of these systems type is concerned with Electroencephalogram (EEG) signals and seizure detection. We designed a CAD system approach for seizure detection that optimizes the complexity of the required solution while also being reusable on different problems.

    METHODS: The methodology is built-in deep data analysis for normalization. In comparison to previous research, the system does not necessitate a feature extraction process that optimizes and reduces system complexity. The data classification is provided by a designed 8-layer deep convolutional neural network.

    RESULTS: Depending on used data, we have achieved the accuracy, specificity, and sensitivity of 98%, 98%, and 98.5% on the short-term Bonn EEG dataset, and 96.99%, 96.89%, and 97.06% on the long-term CHB-MIT EEG dataset.

    CONCLUSIONS: Through the approach to detection, the system offers an optimized solution for seizure diagnosis health problems. The proposed solution should be implemented in all clinical or home environments for decision support.

  11. Zhang S, Bani Y, Izah Selamat A, Abdul Ghani J
    PLoS One, 2023;18(6):e0287910.
    PMID: 37384722 DOI: 10.1371/journal.pone.0287910
    Income inequality is a good indicator reflecting the quality of people's livelihood. There are many studies on the determinants of income inequality. However, few studies have been conducted on the impacts of industrial agglomeration on income inequality and their spatial correlation. The goal of this paper is to investigate the impact of China's industrial agglomeration on income inequality from a spatial perspective. Using data on China's 31 provinces from 2003 to 2020 and the spatial panel Durbin model, our results show that industrial agglomeration and income inequality present an inverted "U-shape" relationship, proving that they are the non-linear change. As the degree of industrial agglomeration increases, income inequality will rise, after it reaches a certain value, income inequality will drop. Therefore, Chinese government and enterprises had better pay attention to the spatial distribution of industrial agglomeration, thereby reducing China's regional income inequality.
  12. Frischer R, Penhaker M, Krejcar O, Kacerovsky M, Selamat A
    Sensors (Basel), 2014 Dec 08;14(12):23563-23580.
    PMID: 25494352
    Precise temperature measurement is essential in a wide range of applications in the medical environment, however the regarding the problem of temperature measurement inside a simple incubator, neither a simple nor a low cost solution have been proposed yet. Given that standard temperature sensors don't satisfy the necessary expectations, the problem is not measuring temperature, but rather achieving the desired sensitivity. In response, this paper introduces a novel hardware design as well as the implementation that increases measurement sensitivity in defined temperature intervals at low cost.
  13. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Rafii MY, Aslani F, et al.
    J Environ Biol, 2014 Sep;35(5):855-64.
    PMID: 25204059
    Six weed species (Leptochola chinensis, Echinochloa crus-galli, Echinochloa colona, Jussiaea linifolia, Oryza sativa (weedy rice) and Cyperus iria) were tested for their salt tolerant traits in terms of chlorophyll, proline and mineral nutrients accumulation against different salinity levels (0, 4, 8, 16, 24, 32, and 40 dS m(-1)). Chlorophyll a, b and total chlorophyll content, proline and mineral nutrients accumulation were determined. Salt stress showed prominent effect on all the parameters investigated and there were significant variations between the all weed species. Chlorophyll content, K+, Ca(2+) and Mg(2+) ions in both shoots and roots significantly decreased; while proline and Na+ accumulation significantly increased with increasing salinity up to 40 dS m(-1). In terms of overall performance, Cyperus iria and E. crus-galliwere relatively more tolerant; E. colona and J. linifolia were tolerant; L. chinensis and O. sativa L were salt sensitive, respectively.
  14. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, et al.
    Biomed Res Int, 2014;2014:208584.
    PMID: 24579076 DOI: 10.1155/2014/208584
    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
  15. Hakim MA, Juraimi AS, Hanafi MM, Ali E, Ismail MR, Selamat A, et al.
    J Environ Biol, 2014 Mar;35(2):317-26.
    PMID: 24665756
    Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.
  16. Hakim MA, Juraimi AS, Hanafi MM, Selamat A, Ismail MR, Karim SM
    J Environ Biol, 2011 Sep;32(5):529-36.
    PMID: 22319865
    An investigation was made to see the salt tolerance of 10 weed species of rice. Properly dried and treated seeds of weed species were placed on 9 cm diameter petridishes lined with Whatman No. 1 filter paper under 6 salinity regimes, viz. 0 (control), 4, 8, 16, 24 and 32 dS m(-1). The petri dishes were then kept in germinator at 25 +/- 1.0 degrees C and 12 hr light. The number of germinated seeds were recorded daily. The final germination percentage, germination index (GI), seedling vigour index, mean germination time and time for 50% germination were estimated. Root and shoot lengths of the weed seedlings were measured at 20 days after salt application and relative growth values were calculated. Results revealed that salinity decreased final germination percentage, seed of germination as measured by GI, and shoot and root length in all the species. Germination of most of the weed seeds was completely arrested (0) at 32 dS m(-1) salinity except in E. colona (12%) and C. iria (13.9%). The species C. iria, E. colona, J. linifolia and E. crusgalli showed better germination (above 30%) upto 24 dS m(-1) salinity level and were regarded as salt-tolerant weed species. J. linifolia, F. miliacea, L. chinensis and O. sativa L. (weedy rice) were graded as moderately tolerant and S. zeylanica, S. grosus and C. difformis were regarded as least tolerant weed species.
  17. Kashiani P, Saleh G, Panandam JM, Abdullah NA, Selamat A
    Genet Mol Biol, 2012 Jul;35(3):614-21.
    PMID: 23055801 DOI: 10.1590/S1415-47572012000400012
    A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon's information index (I) and Nei's gene diversity coefficient (Nei), Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703), while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456). Based on linkage disequilibrium (LD) measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10.
  18. Slaninova N, Fiedorova K, Selamat A, Danisova K, Kubicek J, Tkacz E, et al.
    Sensors (Basel), 2020 Jun 30;20(13).
    PMID: 32629993 DOI: 10.3390/s20133666
    The subject of the submitted work is the proposal of electrodes for the continual measurement of the glucose concentration for the purpose of specifying further hemodynamic parameters. The proposal includes the design of the electronic measuring system, the construction of the electrodes themselves and the functionality of the entire system, verified experimentally using various electrode materials. The proposed circuit works on the basis of micro-ammeter measuring the size of the flowing electric current and the electrochemical measurement method is used for specifying the glucose concentration. The electrode system is comprised of two electrodes embedded in a silicon tube. The solution consists of the measurement with three types of materials, which are verified by using three solutions with a precisely given concentration of glucose in the form of a mixed solution and enzyme glucose oxidase. For the testing of the proposed circuit and the selection of a suitable material, the testing did not take place on measurements in whole blood. For the construction of the electrodes, the three most frequently used materials for the construction of electrodes used in clinical practice for sensing biopotentials, specifically the materials Ag/AgCl, Cu and Au, were used. The performed experiments showed that the material Ag/AgCl, which had the greatest sensitivity for the measurement even without the enzyme, was the most suitable material for the electrode. This conclusion is supported by the performed statistical analysis. On the basis of the testing, we can come to the conclusion that even if the Ag/AgCl electrode appears to be the most suitable, showing high stability, gold-plated electrodes showed stability throughout the measurement similarly to Ag/AgCl electrodes, but did not achieve the same qualities in sensitivity and readability of the measured results.
  19. Adesipo A, Fadeyi O, Kuca K, Krejcar O, Maresova P, Selamat A, et al.
    Sensors (Basel), 2020 Oct 22;20(21).
    PMID: 33105622 DOI: 10.3390/s20215977
    Attention has shifted to the development of villages in Europe and other parts of the world with the goal of combating rural-urban migration, and moving toward self-sufficiency in rural areas. This situation has birthed the smart village idea. Smart village initiatives such as those of the European Union is motivating global efforts aimed at improving the live and livelihood of rural dwellers. These initiatives are focused on improving agricultural productivity, among other things, since most of the food we eat are grown in rural areas around the world. Nevertheless, a major challenge faced by proponents of the smart village concept is how to provide a framework for the development of the term, so that this development is tailored towards sustainability. The current work examines the level of progress of climate smart agriculture, and tries to borrow from its ideals, to develop a framework for smart village development. Given the advances in technology, agricultural development that encompasses reduction of farming losses, optimization of agricultural processes for increased yield, as well as prevention, monitoring, and early detection of plant and animal diseases, has now embraced varieties of smart sensor technologies. The implication is that the studies and results generated around the concept of climate smart agriculture can be adopted in planning of villages, and transforming them into smart villages. Hence, we argue that for effective development of the smart village framework, smart agricultural techniques must be prioritized, viz-a-viz other developmental practicalities.
  20. Marešová P, Klímová B, Honegr J, Kuča K, Ibrahim WNH, Selamat A
    Front Public Health, 2020;8:308.
    PMID: 32903646 DOI: 10.3389/fpubh.2020.00308
    Objective: Medical device development, from the product's conception to release to market, is very complex and relies significantly on the application of exact processes. This paper aims to provide an analysis and summary of current research in the field of medical device development methodologies, discuss its phases, and evaluate the associated legislative and risk aspects. Methods: The literature search was conducted to detect peer-reviewed studies in Scopus, Web of Science, and Science Direct, on content published between 2007 and November 2019. Based on exclusion and inclusion criteria, 13 papers were included in the first session and 11 were included in the second session. Thus, a total of 24 papers were analyzed. Most of the publications originated in the United States (7 out of 24). Results: The medical device development process comprises one to seven stages. Six studies also contain a model of the medical device development process for all stages or for just some of the stages. These studies specifically describe the concept stage during which all uncertainties, such as the clinical need definition, customer requirements/needs, finances, reimbursement strategy, team selection, and legal aspects, must be considered. Conclusion: The crucial factor in healthcare safety is the stability of factors over a long production time. Good manufacturing practices cannot be tested on individual batches of products; they must be inherently built into the manufacturing process. The key issues that must be addressed in the future are the consistency in the classification of devices throughout the EU and globally, and the transparency of approval processes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links