Displaying all 4 publications

  1. Oshkour AA, Talebi H, Seyed Shirazi SF, Yau YH, Tarlochan F, Abu Osman NA
    Artif Organs, 2015 Feb;39(2):156-64.
    PMID: 24841371 DOI: 10.1111/aor.12315
    This study aimed to assess the performance of different longitudinal functionally graded femoral prostheses. This study was also designed to develop an appropriate prosthetic geometric design for longitudinal functionally graded materials. Three-dimensional models of the femur and prostheses were developed and analyzed. The elastic modulus of these prostheses in the sagittal plane was adjusted along a gradient direction from the distal end to the proximal end. Furthermore, these prostheses were composed of titanium alloy and hydroxyapatite. Results revealed that strain energy, interface stress, and developed stress in the femoral prosthesis and the bone were influenced by prosthetic geometry and gradient index. In all of the prostheses with different geometries, strain energy increased as gradient index increased. Interface stress and developed stress decreased. The minimum principal stress and the maximum principal stress of the bone slightly increased as gradient index increased. Hence, the combination of the femoral prosthetic geometry and functionally graded materials can be employed to decrease stress shielding. Such a combination can also be utilized to achieve equilibrium in terms of the stress applied on the implanted femur constituents; thus, the lifespan of total hip replacement can be prolonged.
  2. Mehrali M, Seyed Shirazi SF, Baradaran S, Mehrali M, Metselaar HS, Kadri NA, et al.
    Ultrason Sonochem, 2014 Mar;21(2):735-42.
    PMID: 24120175 DOI: 10.1016/j.ultsonch.2013.08.012
    Calcium silicate hydrate (CSH) consisting of nanosheets has been successfully synthesized assisted by a tip ultrasonic irradiation (UI) method using calcium nitrate (Ca(NO3)·4H2O), sodium silicate (Na2SiO3·9H2O) and sodium dodecyl sulfate (SDS) in water. Systematic studies found that reaction time of ultrasonic irradiation and concentrations of surfactant (SDS) in the system were important factors to control the crystallite size and morphologies. The products were characterized by X-ray power diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectrometry (FTIR). The size-strain plot (SSP) method was used to study the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CSH. These characterization techniques revealed the successful formation of a crystalline phase with an average crystallite size of about 13 nm and nanosheet morphology at a reaction time of 10 min UI with 0.2 g SDS in solvent which were found to be optimum time and concentrations of SDS for the synthesis of CSH powders.
  3. Mehrali M, Moghaddam E, Seyed Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    PLoS One, 2014;9(9):e106802.
    PMID: 25229540 DOI: 10.1371/journal.pone.0106802
    Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.
  4. Gharehkhani S, Seyed Shirazi SF, Yarmand H, Montazer E, Kazi SN, Ibrahim R, et al.
    Carbohydr Polym, 2018 Mar 15;184:376-382.
    PMID: 29352932 DOI: 10.1016/j.carbpol.2018.01.002
    Nanocrystalline cellulose (NCC) a nature-based material, has gained significant attentions for its unique properties. The present study aims to investigate the flow behavior of cellulosic suspension containing non-wood pulp fibers and NCC, by means of rheological and pressure drop measurements. The NCC sample was prepared by sulfuric acid hydrolysis from Acacia mangium fibers. The rheological properties of kenaf/NCC suspensions were studied using viscosity and yield stress measurements. The pressure drop properties of the suspension flow were studied with respect to variation in flow velocity (0.4 m/s-3.6 m/s) and the NCC concentration (70 mg/l and 150 mg/l). The pressure drop results showed that the pulp suspension containing 150 mg/l NCC had higher drag reduction than kenaf suspension alone. The present insights into the flow of pulp/NCC suspension provide a new data and promote the application of NCC in industries.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links