METHODS: Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel.
RESULTS: The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy.
CONCLUSIONS: Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.
METHODOLOGY: All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.
RESULTS, DISCUSSION AND CONCLUSION: Compound W6 (MICsa, st, kp = 5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an = 5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC = 8.16 µM). The anticancer screening demonstrated that compound W17 (IC50 = 4.12 µM) was most potent amongst the synthesized compounds and also more potent than the standard drug 5-FU (IC50 = 7.69 µM).
RESULTS AND DISCUSSION: The synthesized benzimidazole compounds were evaluated for their antimicrobial activity using the tube dilution method and were found to exhibit good antimicrobial potential against selected Gram negative and positive bacterial and fungal species. The compounds were also assessed for their anticancer activity exhibited using the SRB assay and were found to elicit antiproliferative activity against MCF7 breast cancer cell line, which was comparable to the standard drug.
CONCLUSION: Antimicrobial screening results indicated that compounds 1, 2 and 19 to be promising antimicrobial agents against selected microbial species and comparable to standard drugs which included norfloxacin and fluconazole. The anticancer screening results revealed that compounds, 12, 21, 22 and 29 to show the highest activity against MCF7 and their IC50 values were more potent than 5-fluorouracil.
CONCLUSION: Anticancer screening of the synthesized compounds using Sulforhodamine B (SRB) assay demonstrated that compounds 2y (IC50 = 0.01 µmol/mL) and 4y (IC50= 0.02 µmol/mL) have high antiproliferative potential against human colorectal carcinoma cancer cell line than the reference drug (5- fluorouracil) and these compounds also showed best dock score with better potency within the ATP binding pocket and may also be used lead for rational drug designing.
RESULTS AND DISCUSSION: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug.
CONCLUSION: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.
Methods: The structures of synthesized compounds were confirmed by physicochemical and spectral means. The synthesized compounds were screened for their antimicrobial and antiproliferative activities by tube dilution and Sulforhodamine B (SRB) assays, respectively.
Results and conclusion: The in vitro biological screening results revealed that compound Z24 exhibited promising antimicrobial and anticancer activities which are comparable to standards.
Methodology: The antimicrobial activity of synthesized 2MBI derivatives were evaluated against Gram positive and Gram negative bacterial species as well as fungal species by tube dilution technique whereas their anticancer activity was assessed against human colorectal carcinoma cell line (HCT116) by Sulforhodamine B (SRB) assay. They were also structurally characterized by IR, NMR, MS and elemental analyses.
Results discussion and conclusion: The antimicrobial activity findings revealed that compound N1 (MIC
bs,st,
ca
= 1.27, 2.54, 1.27 µM), N8 (MIC
ec
= 1.43 µM), N22 (MIC
kp,an
= 2.60 µM), N23 and N25 (MIC
sa
= 2.65 µM) exhibited significant antimicrobial effects against tested strains, i.e. Gram-positive, Gram-negative (bacterial) and fungal strains. The anticancer screening results demonstrated that compounds N9, N18 (IC50 = 5.85, 4.53 µM) were the most potent compounds against cancer cell line (HCT116) even more than 5-FU, the standard drug (IC50 = 9.99 µM).
METHODS: The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU as standards.
RESULTS, DISCUSSION AND CONCLUSION: The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7 µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1 µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1 µM, MICAmo = 17.1 µM) and fluconazole (MICFlu = 20.4 µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01 µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).
OBJECTIVE: This study aimed to investigate the effect of turmeric (20mg/kg) on learning and memory and cholinergic system in a mouse model of stress along with cholinergic blockade.
METHODS: Restrained stress was induced and cholinergic receptors were blocked using scopolamine in mice. Animals were treated with turmeric (turmeric rhizome powder which was also subjected to NMR analyses) and learning and social behavior was examined. Effect of turmeric on cholinergic muscarinic receptors (mAChR; M1, M3 and M5) gene expression was assessed by RT-PCR in both pre-frontal cortex and hippocampus.
RESULTS: Ar-turmerone, curcuminoids and α-linolenic acid were the lead compounds present in turmeric extract. Increased serum corticosterone levels were observed in stressed mice when compared to the control group, while turmeric treatment significantly reduced serum corticosterone level. Turmeric treatment caused an improved learning and memory in Morris water maze test in stressed animals. Social novelty preference was also restored in turmeric treated animals. Following turmeric treatment, M5 expression was improved in the cortex and M3 expression was improved in the hippocampus of stress + scopolamine + turmeric treated group.
CONCLUSIONS: These findings highlight the therapeutic role of turmeric by increasing the expression of M3, M5 and improving learning and memory. Turmeric can be an effective candidate for the treatment of amnesia caused by the stress.
RESULTS: Compounds 8, 9 and 11 emerged out as excellent antimicrobial agents in antimicrobial assays when compared to standard antibacterial and antifungal drugs. The results of anticancer activity displayed that majority of the derivatives were less cytotoxic than standard drugs (tamoxifen and 5-fluorouracil) towards MCF7 and HCT116 cell lines. However, compound 2 (IC50 = 0.0047 µM/ml) and compound 10 (IC50 = 0.0058 µM/ml) showed highest cytotoxicity against MCF7 and HCT116 cell lines, respectively. The results of in vivo antitubercular activity revealed that a dose of 1.34 mg/kg was found to be safe for the synthesized compounds. The toxic dose of the compounds was 5.67 mg/kg while lethal dose varied from 1.81 to 3.17 mg/kg body weight of the mice. Compound 18 inhibited all the three mycobacterial enzymes to the highest level in comparison to the other synthesized derivatives but showed lesser inhibition as compared to streptomycin sulphate.
CONCLUSIONS: A further research on most active synthesized compounds as lead molecules may result in discovery of novel anticancer and antitubercular agents.
RESULTS: The structures of synthesized bis-pyrimidine molecules were confirmed by physicochemical and spectral means. The synthesized compounds were further evaluated for their in vitro biological potentials i.e. antimicrobial activity using tube dilution method and anticancer activity against human colorectal carcinoma (HCT116) cancer cell line by Sulforhodamine B assay.
CONCLUSIONS: The biological study demonstrated that compounds s7, s8, s11, s14, s16, s17 and s18 have shown more promising antimicrobial activity with best MIC values than the cefadroxil (antibacterial) and fluconazole (antifungal) and compound s3 found to have better anticancer activity against human colorectal carcinoma (HCT116) cancer cell line.