Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Yaacob, M., Rajab N.F., Shahar, S., Sharif, R.
    Food Research, 2018;2(2):124-133.
    MyJurnal
    Modern science has found that most traditional practice of using stingless bee honey has
    great potential as an added value in modern medicine and considered to have a higher
    medicinal value than other bee species. However, due to the relatively low output of honey
    compared to other honey so, focus on this honey is limited. Hence, this systematic review
    provides the updated result on the potential value of stingless bee honey as an antioxidant,
    anti-inflammatory, cytotoxicity and antimicrobial. The search strategy was developed in
    four databases (Scopus, Medline and Ovid, EMBASE and PubMed) with the search terms
    "("honey" and "Kelulut", "honey" and "stingless bee", "honey" and "Trigona", "honey"
    and "pot honey", and "honey" and "Melipon")". The merged data was assessed using
    PRISMA guidelines and after the duplicates were removed, 1271 articles were segregated.
    Afterwards, 1232 articles were eliminated because they do not meet the inclusion criteria
    and 39 articles were reevaluated again for eligibility. Finally, after the evaluation process,
    only 26 of the articles were chosen for this review. The data of 26 articles of stingless bee
    honey were deliberated based on antioxidant properties, anti-inflammatory, cytotoxicity
    and analysis of antimicrobial activity. Three articles reported on antioxidant properties,
    one article on anti-inflammatory analysis, two articles on cytotoxicity analysis, and twenty
    articles on analysis of antimicrobial activity. Based on the feasible affirmation from the
    literature, stingless bee honey has an antioxidant capacity that able to decrease the ROS.
    ROS able to lead a variety of health problems thus stingless bee honey can be a dietary
    supplement to overcome this problem.
  2. Sharif, R., Chan, K.M., Ooi, T.C., Mohammad, N.F.
    MyJurnal
    Recent findings showed that stevioside can demonstrate anti-cancer property in selected
    cell lines. In this study, the cytotoxicity and genotoxicity of stevioside were examined on
    human colon carcinoma cell, HCT 116 (targeted cell) and human colon derived CCD18Co
    myofibroblast cell lines (non-targeted cell) using the MTT (3-(4, 5-dimethylthiazol-2-yl)-
    2,5-diphenyltettrazolium bromide) assay and alkaline comet assay, respectively. Result
    demonstrated that stevioside induced cell death on both HCT 116 and CCD18Co cell lines only
    at the highest concentration, 200 μM by causing not more than 20 and 30 percent of cell death
    on CCD18Co and HCT 116 cell lines, respectively (p0.05). In conclusion, stevioside did not
    exhibit cytotoxic and genotoxic effect on HCT 116 and CCD18Co cell lines respectively hence
    secured its uses as a non-caloric sweetener
  3. Sharif R, Ooi TC
    Genes Environ, 2024 Feb 08;46(1):5.
    PMID: 38326915 DOI: 10.1186/s41021-024-00300-0
    The prevalence of cancer is increasing globally, and Malaysia is no exception. The exposome represents a paradigm shift in cancer research, emphasizing the importance of a holistic approach that considers the cumulative effect of diverse exposures encountered throughout life. The exposures include dietary factors, air and water pollutants, occupational hazards, lifestyle choices, infectious agents and social determinants of health. The exposome concept acknowledges that each individual's cancer risk is shaped by not only their genetic makeup but also their unique life experiences and environmental interactions. This comprehensive review was conducted by systematically searching scientific databases such as PubMed, Scopus and Google Scholar, by using the keywords "exposomes (environmental exposures AND/OR physical exposures AND/OR chemical exposures) AND cancer risk AND Malaysia", for relevant articles published between 2010 and 2023. Articles addressing the relationship between exposomes and cancer risk in the Malaysian population were critically evaluated and summarized. This review aims to provide an update on the epidemiological evidence linking exposomes with cancer risk in Malaysia. This review will provide an update for current findings and research in Malaysia related to identified exposomes-omics interaction and gap in research area related to the subject matter. Understanding the interplay between complex exposomes and carcinogenesis holds the potential to unveil novel preventive strategies that may be beneficial for public health.
  4. Sharif R, Thomas P, Zalewski P, Fenech M
    Mol Nutr Food Res, 2015 Jun;59(6):1200-12.
    PMID: 25755079 DOI: 10.1002/mnfr.201400784
    An increased intake of Zinc (Zn) may reduce the risk of degenerative diseases but may prove to be toxic if taken in excess. This study aimed to investigate whether zinc carnosine supplement can improve Zn status, genome stability events, and Zn transporter gene expression in an elderly (65-85 years) South Australian cohort with low plasma Zn levels.
  5. Ooi TC, Mohammad NH, Sharif R
    Biol Trace Elem Res, 2014 Dec;162(1-3):8-17.
    PMID: 25326781 DOI: 10.1007/s12011-014-0153-y
    The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p 
  6. Ooi TC, Chan KM, Sharif R
    Biol Trace Elem Res, 2016 Aug;172(2):458-464.
    PMID: 26749414 DOI: 10.1007/s12011-015-0615-x
    This study aimed to investigate the role of the mitogen-activated protein kinases (MAPKs) signaling pathway in the anti-inflammatory effects of zinc carnosine (ZnC) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Cells were pretreated with ZnC (0-100 μM) for 2 h prior to the addition of LPS (1 μg/ml). Following 24 h of treatment, ZnC was found not to be cytotoxic to RAW 264.7 cells up to the concentration of 100 μM. Our current findings showed that ZnC did not protect RAW 264.7 cells from LPS-induced "respiratory burst". Significant increment in intracellular glutathione (GSH) level and reduction in thiobarbituric acid reactive substances (TBARS) concentration can only be observed in cell pretreated with high doses of ZnC only (50 and 100 μM for GSH and 100 μM only for TBARS). On the other hand, pretreatment of cells with ZnC was able to inhibit LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 expression significantly. Furthermore, results from immunoblotting showed that ZnC was able to suppress nuclear factor-kappaB (NF-κB) activation, and highest suppression can be observed at 100 μM of ZnC pretreatment. However, pretreatment of ZnC did not inhibit the early activation of MAPKs. In conclusion, pretreatment with ZnC was able to inhibit the expression of inflammatory mediators in LPS-induced RAW 264.7 cells, mainly via suppression of NF-κB activation, and is independent of the MAPKs signaling pathway.
  7. Ooi TC, Chan KM, Sharif R
    Nutr Cancer, 2017 Feb-Mar;69(2):201-210.
    PMID: 28094570 DOI: 10.1080/01635581.2017.1265132
    Cancer is one of the major causes of death worldwide, and the incidence and mortality rates of cancer are expected to rise tremendously in the near future. Despite a better understanding of cancer biology and advancement in cancer management, current strategies in cancer treatment remain costly and ineffective. Hence, instead of putting more efforts to search for new cancer cures, attention has now been shifted to the development of cancer chemopreventive agents as a preventive measure for cancer formation. It is well known that neoplastic transformation of cells is multifactorial, and the occurrence of oxidative stress, chronic inflammation, and genomic instability events has been implicated in the carcinogenesis of cells. Zinc l-carnosine (ZnC), which is clinically used as gastric ulcer treatment in Japan, has been suggested to have the potential in preventing cancer development. Multiple studies have revealed that ZnC possesses potent antioxidant, anti-inflammatory, and genomic stability enhancement effects. Thus, this review provides some mechanistic insight into the antioxidant, anti-inflammatory, and genomic stability enhancement effects of ZnC in relevance to its chemopreventive potential.
  8. Jalambo M, Karim N, Naser I, Sharif R
    East Mediterr Health J, 2018 Jul 29;24(6):560-568.
    PMID: 30079951 DOI: 10.26719/2018.24.6.560
    Background: Iron deficiency and iron-deficiency anaemia are associated with oxidative stress, but their role is largely unclear. Information is scarce on the effects of iron supplementation on biomarkers of oxidative stress in humans.

    Aims: This study evaluated the effectiveness of iron supplementation and nutrition education on improving the levels of haemoglobin and ferritin, and decreasing oxidative stress among iron-deficient female adolescents in Gaza, Palestine.

    Methods: A total 131 iron-deficient female adolescents were recruited and allocated randomly into 3 different groups. The iron supplementation group (A) received 200 mg of ferrous fumarate weekly during the 3-month intervention, the iron supplementation with nutrition education group (B) received iron supplements with nutrition education sessions, and the control group (C) did not receive any intervention. The levels of haemoglobin, ferritin and malonyl dialdehyde were measured at baseline, after 3 months (at which point the intervention was stopped), and then 3 months later. Trial registration number: ACTRN12618000960257.

    Results: Haemoglobin levels increased significantly after supplementation in both groups A and B. At the follow-up stage (3 months after stopping the intervention), iron and haemoglobin levels in group B continued to increase and malonyl dialdehyde decreased. In Group A, haemoglobin, ferritin and malonyl dialdehyde levels decreased after 3 months of stopping the intervention. No changes were seen in Group C.

    Conclusions: A nutrition programme should be adopted and integrated into comprehensive intervention programmes to target iron-deficiency anaemia among female adolescents in Palestine.

  9. Ooi TC, Chan KM, Sharif R
    Biol Trace Elem Res, 2020 Mar 08.
    PMID: 32146577 DOI: 10.1007/s12011-020-02108-9
    Zinc L-carnosine (ZnC) is the chelate form of zinc and L-carnosine and is one of the zinc supplements available in the market. This study aims to determine the protective effects of ZnC against L-buthionine sulfoximine (BSO)-induced oxidative stress in CCD-18co human normal colon fibroblast cell line. CCD-18co cells were pretreated with ZnC (0-100 μM) for 24 h before the induction of oxidative stress by BSO (1 mM) for another 24 h. Results from this present study demonstrated that ZnC up to the concentration of 100 μM was not cytotoxic to CCD-18co cells. Induction with BSO significantly increased the intracellular reactive oxygen species (ROS) levels and reduced the intracellular glutathione (GSH) levels in CCD-18co cells. Pretreatment with ZnC was able to attenuate the increment in intracellular ROS level in CCD-18co cells significantly in a concentration-dependent manner. However, ZnC did not have any effects on intracellular GSH levels and Nrf2 activation. Mechanistically, pretreatment with ZnC was able to upregulate the expression of metallothionein (MT) and superoxide dismutase 1 (SOD1) in CCD-18co cells. Results from dual-luciferase reporter gene assay reported that ZnC was able to increase the MRE-mediated relative luciferase activities in a concentration-dependent manner, suggesting that the induction of MT expression by ZnC was due to the activation of MTF-1 signaling pathway. Taken together, our current findings suggest that ZnC can protect CCD-18co cells from BSO-induced oxidative stress via the induction of MT and SOD1 expression.
  10. Ooi TC, Chan KM, Sharif R
    Free Radic Res, 2020 May;54(5):330-340.
    PMID: 32366187 DOI: 10.1080/10715762.2020.1763333
    Zinc L-carnosine (ZnC) is a chelated compound of zinc and L-carnosine. The present study aims to determine the protective effects of ZnC against hydrogen peroxide (H2O2)-induced oxidative stress and genomic damage in CCD-18co human normal colon fibroblast cells. Generally, cells were pretreated with ZnC (0-100 µM) for 24 h before challenged with 20 µM of H2O2 for 1 h to induce oxidative damage. Results showed that pretreatment with ZnC was able to reduce the intracellular ROS level in CCD-18co cells after being challenged with H2O2. Moreover, pretreatment with ZnC demonstrated protection from H2O2-induced DNA strand breaks and micronucleus formation. Our current findings revealed that pretreatment with ZnC could induce the activation of MTF-1 signaling pathway and expression of metallothionein (MT) in a dose-dependent manner. However, ZnC did not have any effects on Nrf2 signaling pathway and the expression of glutathione, superoxide dismutase 1, and glutamate-cysteine ligase catalytic subunit (GCLC). Furthermore, pretreatment with ZnC did not induce the expression of OGG1 and PARP-1 in CCD-18co cells, suggesting that these two DNA repairing enzymes are not related to the genoprotective effects of ZnC. Since the expression of MT has been demonstrated to protect cells from oxidative DNA damage induced by various genotoxic agents, the genoprotective effects of ZnC might be due to the ability of ZnC to induce the expression of MT. In conclusion, ZnC pretreatment was able to protect CCD-18co cells from H2O2-induced genomic damage via the activation of the MTF-1 signalling pathway and the induction of MT expression.
  11. Ooi TC, Chan KM, Sharif R
    Immunopharmacol Immunotoxicol, 2017 Oct;39(5):259-267.
    PMID: 28697633 DOI: 10.1080/08923973.2017.1344987
    CONTEXT: Zinc L-carnosine (ZnC) is a chelate of Zn and L-carnosine and is used clinically in the treatment of peptic ulcer.

    OBJECTIVE: In this study, we aim to investigate the involvement of heme oxygenase-1 (HO-1) in the anti-inflammatory effects of ZnC in lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages.

    MATERIALS AND METHODS: We used immunoblotting analysis to evaluate the involvement of HO-1 in the anti-inflammatory effects of ZnC and the signaling pathway involved was measured using Dual luciferase reporter assay.

    RESULTS: Results from immunoblotting analysis demonstrated that pretreatment of cells with ZnC enhanced the expression of HO-1 in RAW 264.7 cells. Pretreatment of cells with HO-1 inhibitor (tin protoporphyrin IX dichloride) significantly attenuated the inhibitory effects of ZnC on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression and NF-κB activation in LPS-induced RAW 264.7 cells, suggesting that HO-1 play an important role in the suppression of inflammatory responses induced by ZnC. Furthermore, results from co-immunoprecipitation of Nrf2 and Keap1 and dual luciferase reporter assay showed that pretreatment of ZnC was able to activate the Nrf2 signaling pathway. Treatment of cells with p38 inhibitor (SB203580), c-Jun N-terminal kinase inhibitor (SP600125), and MEK 1/2 inhibitor (U0126) did not significantly suppress the induction of HO-1 by ZnC. Moreover, our present findings suggest that the effects of ZnC on NO production, HO-1 expression, and Nrf2 activation were attributed to its Zn subcomponent, but not l-carnosine.

    CONCLUSION: Pretreatment with ZnC was able to activate Nrf2/HO-1 signaling pathway, thus suppressing the expression of inflammatory mediators, such as NO and iNOS in LPS-induced RAW 264.7 cells.

  12. Meramat A, Rajab NF, Shahar S, Sharif RA
    J Nutr Health Aging, 2017;21(5):539-545.
    PMID: 28448084 DOI: 10.1007/s12603-016-0759-1
    BACKGROUND: A cross sectional study was conducted in a group of 317 subjects older than 60 in Malaysia, aimed to determine risk factors associated with cognitive impairment in older adults, focusing on trace elements and DNA damage.

    METHOD: Cognitive decline was determined by Montreal Cognitive Assessment (MoCA). Oxidative stress markers (malondialdehyde-MDA and superoxide dismutase-SOD) were determined and DNA damage was assayed using Alkaline Comet Assay. Toenail samples were taken and analyzed using ICP-MS to determine trace element levels.

    RESULTS: A total of 62.1 % of subjects had cognitive impairment. Subjects with cognitive impairment had significantly higher levels of MDA and DNA damage as compared to the group with normal cognitive function; MDA (2.07 ± 0.05 nmol/L vs 1.85 ± 0.06 nmol/L) (p<0.05) and DNA damage (% Tail Density, 14.52 ± 0.32 vs 10.31 ± 0.42; Tail Moment, 1.79 ± 0.06 vs 1.28 ± 0.06) (p<0.05 for all parameters). However, the level of SOD among subjects with cognitive impairment (6.67 ± 0.33 u.e/min/mg protein) was lower than the level among those with normal cognitive functions (11.36 ± 0.65 u.e/min/mg protein) (p<0.05). Multiple logistic regression revealed the predictors for cognitive impairment among the subjects were DNA damage (Adjusted odd ratio [OR], 1.37; 95% confidence interval [CI], 1.18-1.59), level of trace elements in toenails namely, lead (OR, 2.471; CI, 1.535-3.980) and copper (OR, 1.275; CI, 1.047-1.552) (p<0.05).

    CONCLUSION: High levels of lead and copper can lead to increase in oxidative stress levels and are associated with DNA damage that eventually could be associated with cognitive decline.

  13. Sharif R, Ghazali AR, Rajab NF, Haron H, Osman F
    Food Chem Toxicol, 2008 Jan;46(1):368-74.
    PMID: 17900779
    Malaysian locally processed raw food products are widely used as main ingredients in local cooking. Previous studies showed that these food products have a positive correlation with the incidence of cancer. The cytotoxicity effect was evaluated using MTT assay (3-(4,5-dimetil-2-thiazolil)-2,5-diphenyl-2H-tetrazolium bromide) against Chang liver cells at 2000 microg/ml following 72 h incubation. Findings showed all methanol extracts caused a tremendous drop in the percentage of cell viability at 2000 microg/ml (shrimp paste - 41.69+/-3.36%, salted fish - 37.2+/-1.06%, dried shrimp - 40.32+/-1.8%, p<0.05). To detect DNA damage in a single cell, alkaline Comet Assay was used. None of the extracts caused DNA damage to the Chang liver cells at 62.5 microg/ml following 24 h incubation, as compared to the positive control, hydrogen peroxide (tail moment - 9.50+/-1.50; tail intensity - 30.50+/-2.50). Proximate analysis which was used for the evaluation of macronutrients in food showed that shrimp paste did not comply with the protein requirement (<25%) as in Food Act 1983. Salt was found in every sample with the highest percentage being detected in shrimp paste which exceeded 20%. Following heavy metal analysis (arsenic, cadmium, lead and mercury), arsenic was found in every sample with dried shrimps showing the highest value as compared to the other samples (6.16 mg/kg). In conclusion, several food extracts showed cytotoxic effect but did not cause DNA damage against Chang liver cells. Salt was found as the main additive and arsenic was present in every sample, which could be the probable cause of the toxicity effects observed.
  14. Ooi TC, Yaacob M, Rajab NF, Shahar S, Sharif R
    Saudi J Biol Sci, 2021 May;28(5):2987-2994.
    PMID: 34025176 DOI: 10.1016/j.sjbs.2021.02.039
    Oxidative stress, DNA damage, and unresolved inflammation are the predisposing factors of many chronic and degenerative diseases, including cancer. Stingless bee honey (SBH) is recognized to have high medicinal value by traditional medicine practitioners and has been used to treat various illnesses traditionally. This study aimed to determine the antioxidant, anti-inflammatory, and genoprotective effects of SBH by using in vitro cell culture models. The sugar content, total phenolic content, radical scavenging activity, and ferric reducing antioxidant power (FRAP) of SBH were determined in this study. Then, the protective effect of SBH against hydrogen peroxide (H2O2)-induced cell death and DNA damage was studied by using WIL2-NS human lymphoblastoid cell line, while the lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages cell line was used to study the anti-inflammatory effects of SBH. Results from this present study showed that the major sugar contents of SBH were fructose (19.39 + 0.01%) and glucose (14.03 ± 0.03%). Besides, the total phenolic content, the radical scavenging activity, and the FRAP value of SBH were 15.38 ± 0.02 mg GAE/100 g of honey, 34.04 ± 0.21%, and 206.77 + 1.76 μM AAE/100 g honey respectively. Pretreatment with SBH protected WIL2-NS cells from H2O2-induced cell death and DNA damage (p 
  15. Sharif R, Shahar S, Rajab NF, Fenech M
    Nutr Cancer, 2021 Jul 20.
    PMID: 34282666 DOI: 10.1080/01635581.2021.1952627
    The incidence of cancer globally is increasing, partly due to lifestyle factors. Despite a better understanding of cancer biology and advancement in cancer management and therapies, current strategies in cancer treatment remain costly and cause socioeconomic burden especially in Asian countries. Hence, instead of putting more efforts in searches for new cancer cures, attention has now shifted to understanding how to mitigate cancer risk by modulating lifestyle factors. It has been established that carcinogenesis is multifactorial, and the important detrimental role of oxidative stress, chronic inflammation, and genomic instability is evident. To date, there is no study linking dietary pattern and genomic stability in cancer risk in the Asian food landscape. Thus, this present review article discusses recent literature on dietary pattern and genomic stability and its relationship with cancer risk in Asia.
  16. Jalambo MO, Karim NA, Naser IA, Sharif R
    Public Health Nutr, 2018 Oct;21(15):2793-2802.
    PMID: 29911513 DOI: 10.1017/S1368980018001568
    OBJECTIVE: The present study aimed to determine the prevalence of anaemia, iron deficiency (ID) and iron-deficiency anaemia (IDA) among female adolescents in the Gaza Strip, Palestine, as well as the risk factors involved in these conditions.

    DESIGN: The study was conducted using the quantitative descriptive method with a cross-sectional design. Data were collected using an FFQ and sociodemographic, sedentary behaviour and physical activity questionnaires. Anthropometric measurements and blood analyses were also conducted.

    SETTING: The study population included all Palestinian female adolescents enrolled in secondary schools in the academic years 2015-2016. Five female secondary schools were selected randomly from five governorates of the Gaza Strip.

    SUBJECTS: Female adolescents (n 330) aged 15-19 years in the selected secondary schools were enrolled randomly.

    RESULTS: Prevalence of anaemia, ID and IDA among female adolescents in the Gaza Strip, Palestine, was 35·8, 40·3 and 26·0 %, respectively. A significant association (P<0·05) existed between ID, anaemia and IDA and dietary habits, including skipping breakfast and amount of junk food intake. Also, low consumption of fruits and vegetables was associated with IDA in the female adolescents. A statistically significant association was found between mother's education and ID but not with the other sociodemographic factors.

    CONCLUSIONS: The study shows that there is an alarming problem of anaemia and IDA in the Gaza Strip, Palestine. This may indicate that there are insufficient nutrition education programmes, particularly inside schools or by the mass media.

  17. Ooi TC, Ahmad A, Rajab NF, Sharif R
    Nutrients, 2023 Jul 18;15(14).
    PMID: 37513601 DOI: 10.3390/nu15143184
    Senescence is a normal biological process that is accompanied with a series of deteriorations in physiological function. This study aimed to investigate the effects of bovine colostrum milk supplementation on metabolic changes and the expression of various biomarkers on inflammation, antioxidant and oxidative damage, nutrient metabolism, and genomic stability among older adults. Older adults (50-69 years old) who participated in the 12-week randomized, double-blinded, placebo-controlled trial were instructed to consume the IgCo bovine colostrum-enriched skim milk or regular skim milk (placebo) twice daily. Following 12 weeks of intervention, participants in the intervention group had lower expression levels in pro-inflammatory mediators (CRP, IL-6, and TNF-α), with significant (p < 0.05) interaction effects of the group and time observed. However, no significant interaction effect was observed in the vitamin D, telomerase, 8-OHdG, MDA, and SOD activities. UPLC-MS-based untargeted metabolomics analysis revealed that 22 metabolites were upregulated and 11 were downregulated in the intervention group compared to the placebo group. Glycerophospholipid metabolism, along with cysteine and methionine metabolism were identified as the potential metabolic pathways that are associated with bovine colostrum milk consumption. In conclusion, consuming bovine colostrum milk may induce metabolic changes and reduce the expression of various pro-inflammatory mediators, thus improving the immune function in older adults.
  18. Xie C, Hao X, Yuan H, Wang C, Sharif R, Yu H
    Onco Targets Ther, 2024;17:7-26.
    PMID: 38283733 DOI: 10.2147/OTT.S437536
    Hepatocellular carcinoma (HCC) is one of the most common aggressive tumors in the world. Despite the availability of various treatments, its prognosis remains poor due to the lack of specific diagnostic indicators and the high heterogeneity of HCC cases. CircRNAs are noncoding RNAs with stable and highly specific expression. Extensive research evidence suggests that circRNAs mediate the pathogenesis and progression of HCC through acting as miRNA sponges, protein modulators, and translation templates. Tumor microenvironment (TME) has become a hotspot of immune-related research in recent years due to its effects on metabolism, secretion and immunity of HCC. Accordingly, understanding the role played by circRNAs in TME is important for the study of HCC. This review will discuss the crosstalk between circRNAs and TME in HCC. In addition, we will discuss the current deficiencies and controversies in research on circRNAs and predict future research directions.
  19. Ooi TC, Meramat A, Rajab NF, Shahar S, Sharif R
    J Nutr Health Aging, 2022;26(3):272-281.
    PMID: 35297471 DOI: 10.1007/s12603-022-1757-0
    OBJECTIVES: This study aimed to determine the relationship between oxidative stress, DNA damage, inflammation, and metabolic biomarkers as the mediating factor between Islamic Sunnah intermittent fasting (IF) practice and cognitive function among older adults with mild cognitive impairment (MCI).

    DESIGN: This study was a 36 months prospective cohort study.

    SETTING: Community-dwelling older participants recruited through a stratified random sampling method from four states representing Malaysia's central, north-west, northeast and southern regions.

    PARTICIPANTS: Ninety-nine Malay Muslim older adults (n= 99) aged 60 and above with MCI and no known critical illnesses were included in the current analysis. The participants were divided into regularly practicing IF (r-IF), irregularly practicing IF (i-IF) and not practicing IF (n-IF) groups.

    MEASUREMENTS: Fasting venous blood was collected and used to determine the levels of oxidative stress, DNA damage, inflammatory and metabolic biomarkers. Mini-Mental State Examination, Montreal Cognitive Assessment, Rey Auditory Verbal Learning Test, Digit Span and Digit symbol were used to evaluate the cognitive function. Then, the mediation analysis was conducted using a multistep regression model to determine the mediating role of various biomarkers between IF practice and cognitive function.

    RESULTS: When comparing the r-IF and n-IF groups, higher SOD activity, lower DNA damage (percentage of DNA in tail), lower CRP levels and higher HDL-cholesterol levels established partial mediation while lower insulin levels established complete mediation between IF practice and better cognitive function. Meanwhile, when comparing the r-IF and i-IF groups, higher SOD activity and lower CRP levels completely mediated the effects of IF practice on better cognitive function.

    CONCLUSION: It can be concluded that changes in antioxidant function, DNA damage, inflammation and a limited set of metabolic biomarkers (insulin and HDL cholesterol) may mediate improvements in cognitive function among older participants with MCI who practice Islamic Sunnah IF.

  20. Ooi TC, Meramat A, Rajab NF, Shahar S, Ismail IS, Azam AA, et al.
    Nutrients, 2020 Aug 30;12(9).
    PMID: 32872655 DOI: 10.3390/nu12092644
    Intermittent fasting (IF) refers to various dietary regimens that cycle between a period of non-fasting and a period of total fasting. This study aimed to determine the effects of IF on cognitive function among elderly individuals who practice IF who have mild cognitive impairment (MCI). A total of 99 elderly subjects with MCI of Malay ethnicity without any terminal illness were recruited from a larger cohort study, LRGS TUA. The subjects were divided into three groups, comprising those who were regularly practicing IF (r-IF), irregularly practicing IF (i-IF), and non-fasters (n-IF). Upon 36 months of follow-up, more MCI subjects in the r-IF group reverted to successful aging with no cognitive impairment and diseases (24.3%) compared to those in i-IF (14.2%) and n-IF groups (3.7%). The r-IF group's subjects exhibited significant increment in superoxide dismutase (SOD) activity and reduction in body weight, levels of insulin, fasting blood glucose, malondialdehyde (MDA), C-reactive protein (CRP), and DNA damage. Moreover, metabolomics analysis showed that IF may modulate cognitive function via various metabolite pathways, including the synthesis and degradation of ketone bodies, butanoate metabolism, pyruvate metabolism, and glycolysis and gluconeogenesis pathways. Overall, the MCI-afflicted older adults who practiced IF regularly had better cognitive scores and reverted to better cognitive function at 36 months follow-up.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links