Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Han MR, Zheng W, Cai Q, Gao YT, Zheng Y, Bolla MK, et al.
    Carcinogenesis, 2017 May 01;38(5):511-518.
    PMID: 28419251 DOI: 10.1093/carcin/bgx010
    Over the past 20 years, high-penetrance pathogenic mutations in genes BRCA1, BRCA2, TP53, PTEN, STK11 and CDH1 and moderate-penetrance mutations in genes CHEK2, ATM, BRIP1, PALB2, RAD51C, RAD50 and NBN have been identified for breast cancer. In this study, we investigated whether there are additional variants in these 13 genes associated with breast cancer among women of Asian ancestry. We analyzed up to 654 single nucleotide polymorphisms (SNPs) from 6269 cases and 6624 controls of Asian descent included in the Breast Cancer Association Consortium (BCAC), and up to 236 SNPs from 5794 cases and 5529 controls included in the Shanghai Breast Cancer Genetics Study (SBCGS). We found three missense variants with minor allele frequency (MAF) <0.05: rs80358978 (Gly2508Ser), rs80359065 (Lys2729Asn) and rs11571653 (Met784Val) in the BRCA2 gene, showing statistically significant associations with breast cancer risk, with P-values of 1.2 × 10-4, 1.0 × 10-3 and 5.0 × 10-3, respectively. In addition, we found four low-frequency variants (rs8176085, rs799923, rs8176173 and rs8176258) in the BRCA1 gene, one common variant in the CHEK2 gene (rs9620817), and one common variant in the PALB2 gene (rs13330119) associated with breast cancer risk at P < 0.01. Our study identified several new risk variants in BRCA1, BRCA2, CHEK2, and PALB2 genes in relation to breast cancer risk in Asian women. These results provide further insights that, in addition to the high/moderate penetrance mutations, other low-penetrance variants in these genes may also contribute to breast cancer risk.
  2. Yu D, Zheng W, Johansson M, Lan Q, Park Y, White E, et al.
    J Natl Cancer Inst, 2018 Aug 01;110(8):831-842.
    PMID: 29518203 DOI: 10.1093/jnci/djx286
    BACKGROUND: The obesity-lung cancer association remains controversial. Concerns over confounding by smoking and reverse causation persist. The influence of obesity type and effect modifications by race/ethnicity and tumor histology are largely unexplored.

    METHODS: We examined associations of body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR) with lung cancer risk among 1.6 million Americans, Europeans, and Asians. Cox proportional hazard regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for potential confounders. Analyses for WC/WHR were further adjusted for BMI. The joint effect of BMI and WC/WHR was also evaluated.

    RESULTS: During an average 12-year follow-up, 23 732 incident lung cancer cases were identified. While BMI was generally associated with a decreased risk, WC and WHR were associated with increased risk after controlling for BMI. These associations were seen 10 years before diagnosis in smokers and never smokers, were strongest among blacks, and varied by histological type. After excluding the first five years of follow-up, hazard ratios per 5 kg/m2 increase in BMI were 0.95 (95% CI = 0.90 to 1.00), 0.92 (95% CI = 0.89 to 0.95), and 0.89 (95% CI = 0.86 to 0.91) in never, former, and current smokers, and 0.86 (95% CI = 0.84 to 0.89), 0.94 (95% CI = 0.90 to 0.99), and 1.09 (95% CI = 1.03 to 1.15) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Hazard ratios per 10 cm increase in WC were 1.09 (95% CI = 1.00 to 1.18), 1.12 (95% CI = 1.07 to 1.17), and 1.11 (95% CI = 1.07 to 1.16) in never, former, and current smokers, and 1.06 (95% CI = 1.01 to 1.12), 1.20 (95% CI = 1.12 to 1.29), and 1.13 (95% CI = 1.04 to 1.23) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Participants with BMIs of less than 25 kg/m2 but high WC had a 40% higher risk (HR = 1.40, 95% CI = 1.26 to 1.56) than those with BMIs of 25 kg/m2 or greater but normal/moderate WC.

    CONCLUSIONS: The inverse BMI-lung cancer association is not entirely due to smoking and reverse causation. Central obesity, particularly concurrent with low BMI, may help identify high-risk populations for lung cancer.

  3. Antwi SO, Bamlet WR, Pedersen KS, Chaffee KG, Risch HA, Shivappa N, et al.
    Carcinogenesis, 2018 07 30;39(8):1056-1067.
    PMID: 29800239 DOI: 10.1093/carcin/bgy072
    Diets with high inflammatory potential are suspected to increase risk for pancreatic cancer (PC). Using pooled analyses, we examined whether this association applies to populations from different geographic regions and population subgroups with varying risks for PC, including variation in ABO blood type. Data from six case-control studies (cases, n = 2414; controls, n = 4528) in the Pancreatic Cancer Case-Control Consortium (PanC4) were analyzed, followed by replication in five nested case-control studies (cases, n = 1268; controls, n = 4215) from the Pancreatic Cancer Cohort Consortium (PanScan). Two polymorphisms in the ABO locus (rs505922 and rs8176746) were used to infer participants' blood types. Dietary questionnaire-derived nutrient/food intake was used to compute energy-adjusted dietary inflammatory index (E-DII®) scores to assess inflammatory potential of diet. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable-adjusted logistic regression. Higher E-DII scores, reflecting greater inflammatory potential of diet, were associated with increased PC risk in PanC4 [ORQ5 versus Q1=2.20, 95% confidence interval (CI) = 1.85-2.61, Ptrend < 0.0001; ORcontinuous = 1.20, 95% CI = 1.17-1.24], and PanScan (ORQ5 versus Q1 = 1.23, 95% CI = 0.92-1.66, Ptrend = 0.008; ORcontinuous = 1.09, 95% CI = 1.02-1.15). As expected, genotype-derived non-O blood type was associated with increased PC risk in both the PanC4 and PanScan studies. Stratified analyses of associations between E-DII quintiles and PC by genotype-derived ABO blood type did not show interaction by blood type (Pinteraction = 0.10 in PanC4 and Pinteraction=0.13 in PanScan). The results show that consuming a pro-inflammatory diet and carrying non-O blood type are each individually, but not interactively, associated with increased PC risk.
  4. Ho PJ, Khng AJ, Tan BK, Tan EY, Tan SM, Tan VKM, et al.
    Breast Cancer, 2022 Sep;29(5):869-879.
    PMID: 35543923 DOI: 10.1007/s12282-022-01366-w
    BACKGROUND: Human leukocyte antigen (HLA) genes play critical roles in immune surveillance, an important defence against tumors. Imputing HLA genotypes from existing single-nucleotide polymorphism datasets is low-cost and efficient. We investigate the relevance of the major histocompatibility complex region in breast cancer susceptibility, using imputed class I and II HLA alleles, in 25,484 women of Asian ancestry.

    METHODS: A total of 12,901 breast cancer cases and 12,583 controls from 12 case-control studies were included in our pooled analysis. HLA imputation was performed using SNP2HLA on 10,886 quality-controlled variants within the 15-55 Mb region on chromosome 6. HLA alleles (n = 175) with info scores greater than 0.8 and frequencies greater than 0.01 were included (resolution at two-digit level: 71; four-digit level: 104). We studied the associations between HLA alleles and breast cancer risk using logistic regression, adjusting for population structure and age. Associations between HLA alleles and the risk of subtypes of breast cancer (ER-positive, ER-negative, HER2-positive, HER2-negative, early-stage, and late-stage) were examined.

    RESULTS: We did not observe associations between any HLA allele and breast cancer risk at P 

  5. Wen W, Shu XO, Guo X, Cai Q, Long J, Bolla MK, et al.
    Breast Cancer Res, 2016 12 08;18(1):124.
    PMID: 27931260
    BACKGROUND: Approximately 100 common breast cancer susceptibility alleles have been identified in genome-wide association studies (GWAS). The utility of these variants in breast cancer risk prediction models has not been evaluated adequately in women of Asian ancestry.

    METHODS: We evaluated 88 breast cancer risk variants that were identified previously by GWAS in 11,760 cases and 11,612 controls of Asian ancestry. SNPs confirmed to be associated with breast cancer risk in Asian women were used to construct a polygenic risk score (PRS). The relative and absolute risks of breast cancer by the PRS percentiles were estimated based on the PRS distribution, and were used to stratify women into different levels of breast cancer risk.

    RESULTS: We confirmed significant associations with breast cancer risk for SNPs in 44 of the 78 previously reported loci at P 

  6. Ugai T, Milne RL, Ito H, Aronson KJ, Bolla MK, Chan T, et al.
    Mol Genet Genomic Med, 2019 Jun;7(6):e707.
    PMID: 31066241 DOI: 10.1002/mgg3.707
    BACKGROUND: Epidemiological studies consistently indicate that alcohol consumption is an independent risk factor for female breast cancer (BC). Although the aldehyde dehydrogenase 2 (ALDH2) polymorphism (rs671: Glu>Lys) has a strong effect on acetaldehyde metabolism, the association of rs671 with BC risk and its interaction with alcohol intake have not been fully elucidated. We conducted a pooled analysis of 14 case-control studies, with individual data on Asian ancestry women participating in the Breast Cancer Association Consortium.

    METHODS: We included 12,595 invasive BC cases and 12,884 controls for the analysis of rs671 and BC risk, and 2,849 invasive BC cases and 3,680 controls for the analysis of the gene-environment interaction between rs671 and alcohol intake for BC risk. The pooled odds ratios (OR) with 95% confidence intervals (CI) associated with rs671 and its interaction with alcohol intake for BC risk were estimated using logistic regression models.

    RESULTS: The Lys/Lys genotype of rs671 was associated with increased BC risk (OR = 1.16, 95% CI 1.03-1.30, p = 0.014). According to tumor characteristics, the Lys/Lys genotype was associated with estrogen receptor (ER)-positive BC (OR = 1.19, 95% CI 1.05-1.36, p = 0.008), progesterone receptor (PR)-positive BC (OR = 1.19, 95% CI 1.03-1.36, p = 0.015), and human epidermal growth factor receptor 2 (HER2)-negative BC (OR = 1.25, 95% CI 1.05-1.48, p = 0.012). No evidence of a gene-environment interaction was observed between rs671 and alcohol intake (p = 0.537).

    CONCLUSION: This study suggests that the Lys/Lys genotype confers susceptibility to BC risk among women of Asian ancestry, particularly for ER-positive, PR-positive, and HER2-negative tumor types.

  7. Lawrenson K, Song F, Hazelett DJ, Kar SP, Tyrer J, Phelan CM, et al.
    Gynecol Oncol, 2019 05;153(2):343-355.
    PMID: 30898391 DOI: 10.1016/j.ygyno.2019.02.023
    OBJECTIVE: Genome-wide association studies (GWASs) for epithelial ovarian cancer (EOC) have focused largely on populations of European ancestry. We aimed to identify common germline variants associated with EOC risk in Asian women.

    METHODS: Genotyping was performed as part of the OncoArray project. Samples with >60% Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. After imputation, genotypes were available for 11,595,112 SNPs to identify associations.

    RESULTS: At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC (odds ratio [OR] = 1.34, P = 8.7 × 10-9) and high-grade serous EOC (HGSOC) (OR = 1.34, P = 4.3 × 10-9). SNP rs6902488 at 6p25.2 (r2 = 0.97 with rs7748275) lies in an active enhancer and is predicted to impact binding of STAT3, P300 and ELF1. We identified additional risk loci with low Bayesian false discovery probability (BFDP) scores, indicating they are likely to be true risk associations (BFDP <10%). At chromosome 20q11.22, rs74272064 was associated with HGSOC risk (OR = 1.27, P = 9.0 × 10-8). Overall EOC risk was associated with rs10260419 at chromosome 7p21.3 (OR = 1.33, P = 1.2 × 10-7) and rs74917072 at chromosome 2q37.3 (OR = 1.25, P = 4.7 × 10-7). At 2q37.3, expression quantitative trait locus analysis in 404 HGSOC tissues identified ESPNL as a putative candidate susceptibility gene (P = 1.2 × 10-7).

    CONCLUSION: While some risk loci were shared between East Asian and European populations, others were population-specific, indicating that the landscape of EOC risk in Asian women has both shared and unique features compared to women of European ancestry.

  8. Yang Y, Shu X, Shu XO, Bolla MK, Kweon SS, Cai Q, et al.
    EBioMedicine, 2019 Oct;48:203-211.
    PMID: 31629678 DOI: 10.1016/j.ebiom.2019.09.006
    BACKGROUND: We previously conducted a systematic field synopsis of 1059 breast cancer candidate gene studies and investigated 279 genetic variants, 51 of which showed associations. The major limitation of this work was the small sample size, even pooling data from all 1059 studies. Thereafter, genome-wide association studies (GWAS) have accumulated data for hundreds of thousands of subjects. It's necessary to re-evaluate these variants in large GWAS datasets.

    METHODS: Of these 279 variants, data were obtained for 228 from GWAS conducted within the Asian Breast Cancer Consortium (24,206 cases and 24,775 controls) and the Breast Cancer Association Consortium (122,977 cases and 105,974 controls of European ancestry). Meta-analyses were conducted to combine the results from these two datasets.

    FINDINGS: Of those 228 variants, an association was observed for 12 variants in 10 genes at a Bonferroni-corrected threshold of P 

  9. Cai Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W, et al.
    Nat Genet, 2014 Aug;46(8):886-90.
    PMID: 25038754 DOI: 10.1038/ng.3041
    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified 3 genetic loci newly associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene; P=8.82×10(-9)), rs10474352 at 5q14.3 (near the ARRDC3 gene; P=1.67×10(-9)) and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene; P=4.25×10(-8)). We replicated these associations in 16,003 cases and 41,335 controls of European ancestry (P=0.030, 0.004 and 0.010, respectively). Data from the ENCODE Project suggest that variants rs4951011 and rs10474352 might be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.
  10. Jia G, Ping J, Shu X, Yang Y, Cai Q, Kweon SS, et al.
    Am J Hum Genet, 2022 Dec 01;109(12):2185-2195.
    PMID: 36356581 DOI: 10.1016/j.ajhg.2022.10.011
    By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p 
  11. Ho WK, Tan MM, Mavaddat N, Tai MC, Mariapun S, Li J, et al.
    Nat Commun, 2020 07 31;11(1):3833.
    PMID: 32737321 DOI: 10.1038/s41467-020-17680-w
    Polygenic risk scores (PRS) have been shown to predict breast cancer risk in European women, but their utility in Asian women is unclear. Here we evaluate the best performing PRSs for European-ancestry women using data from 17,262 breast cancer cases and 17,695 controls of Asian ancestry from 13 case-control studies, and 10,255 Chinese women from a prospective cohort (413 incident breast cancers). Compared to women in the middle quintile of the risk distribution, women in the highest 1% of PRS distribution have a ~2.7-fold risk and women in the lowest 1% of PRS distribution has ~0.4-fold risk of developing breast cancer. There is no evidence of heterogeneity in PRS performance in Chinese, Malay and Indian women. A PRS developed for European-ancestry women is also predictive of breast cancer risk in Asian women and can help in developing risk-stratified screening programmes in Asia.
  12. Permuth JB, Pirie A, Ann Chen Y, Lin HY, Reid BM, Chen Z, et al.
    Hum Mol Genet, 2016 08 15;25(16):3600-3612.
    PMID: 27378695 DOI: 10.1093/hmg/ddw196
    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P  P≥5.0 ×10 -  7) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (PAML = 3.23 × 10 -  5; PSKAT-o = 9.23 × 10 -  4) and KRT13 (PAML = 1.67 × 10 -  4; PSKAT-o = 1.07 × 10 -  5), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed to further unravel the unexplained heritability and biology of this disease.
  13. Ho WK, Tai MC, Dennis J, Shu X, Li J, Ho PJ, et al.
    Genet Med, 2022 Mar;24(3):586-600.
    PMID: 34906514 DOI: 10.1016/j.gim.2021.11.008
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups.

    METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases).

    RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk.

    CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry.

  14. Shu X, Long J, Cai Q, Kweon SS, Choi JY, Kubo M, et al.
    Nat Commun, 2020 Mar 05;11(1):1217.
    PMID: 32139696 DOI: 10.1038/s41467-020-15046-w
    Known risk variants explain only a small proportion of breast cancer heritability, particularly in Asian women. To search for additional genetic susceptibility loci for breast cancer, here we perform a meta-analysis of data from genome-wide association studies (GWAS) conducted in Asians (24,206 cases and 24,775 controls) and European descendants (122,977 cases and 105,974 controls). We identified 31 potential novel loci with the lead variant showing an association with breast cancer risk at P 
  15. Brouckaert O, Rudolph A, Laenen A, Keeman R, Bolla MK, Wang Q, et al.
    Breast Cancer Res, 2017 Nov 07;19(1):119.
    PMID: 29116004 DOI: 10.1186/s13058-017-0909-3
    BACKGROUND: Previous studies have shown that reproductive factors are differentially associated with breast cancer (BC) risk by subtypes. The aim of this study was to investigate associations between reproductive factors and BC subtypes, and whether these vary by age at diagnosis.

    METHODS: We used pooled data on tumor markers (estrogen and progesterone receptor, human epidermal growth factor receptor-2 (HER2)) and reproductive risk factors (parity, age at first full-time pregnancy (FFTP) and age at menarche) from 28,095 patients with invasive BC from 34 studies participating in the Breast Cancer Association Consortium (BCAC). In a case-only analysis, we used logistic regression to assess associations between reproductive factors and BC subtype compared to luminal A tumors as a reference. The interaction between age and parity in BC subtype risk was also tested, across all ages and, because age was modeled non-linearly, specifically at ages 35, 55 and 75 years.

    RESULTS: Parous women were more likely to be diagnosed with triple negative BC (TNBC) than with luminal A BC, irrespective of age (OR for parity = 1.38, 95% CI 1.16-1.65, p = 0.0004; p for interaction with age = 0.076). Parous women were also more likely to be diagnosed with luminal and non-luminal HER2-like BCs and this effect was slightly more pronounced at an early age (p for interaction with age = 0.037 and 0.030, respectively). For instance, women diagnosed at age 35 were 1.48 (CI 1.01-2.16) more likely to have luminal HER2-like BC than luminal A BC, while this association was not significant at age 75 (OR = 0.72, CI 0.45-1.14). While age at menarche was not significantly associated with BC subtype, increasing age at FFTP was non-linearly associated with TNBC relative to luminal A BC. An age at FFTP of 25 versus 20 years lowered the risk for TNBC (OR = 0.78, CI 0.70-0.88, p 

  16. Ghoneim DH, Zhu J, Zheng W, Long J, Murff HJ, Ye F, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 Dec;29(12):2735-2739.
    PMID: 32967863 DOI: 10.1158/1055-9965.EPI-20-0651
    BACKGROUND: Whether circulating polyunsaturated fatty acid (PUFA) levels are associated with pancreatic cancer risk is uncertain. Mendelian randomization (MR) represents a study design using genetic instruments to better characterize the relationship between exposure and outcome.

    METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.

    RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.

    CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.

    IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.

  17. Mocci E, Kundu P, Wheeler W, Arslan AA, Beane-Freeman LE, Bracci PM, et al.
    Cancer Res, 2021 Jun 01;81(11):3134-3143.
    PMID: 33574088 DOI: 10.1158/0008-5472.CAN-20-3267
    Germline variation and smoking are independently associated with pancreatic ductal adenocarcinoma (PDAC). We conducted genome-wide smoking interaction analysis of PDAC using genotype data from four previous genome-wide association studies in individuals of European ancestry (7,937 cases and 11,774 controls). Examination of expression quantitative trait loci data from the Genotype-Tissue Expression Project followed by colocalization analysis was conducted to determine whether there was support for common SNP(s) underlying the observed associations. Statistical tests were two sided and P < 5 × 10-8 was considered statistically significant. Genome-wide significant evidence of qualitative interaction was identified on chr2q21.3 in intron 5 of the transmembrane protein 163 (TMEM163) and upstream of the cyclin T2 (CCNT2). The most significant SNP using the Empirical Bayes method, in this region that included 45 significantly associated SNPs, was rs1818613 [per allele OR in never smokers 0.87, 95% confidence interval (CI), 0.82-0.93; former smokers 1.00, 95% CI, 0.91-1.07; current smokers 1.25, 95% CI 1.12-1.40, P interaction = 3.08 × 10-9). Examination of the Genotype-Tissue Expression Project data demonstrated an expression quantitative trait locus in this region for TMEM163 and CCNT2 in several tissue types. Colocalization analysis supported a shared SNP, rs842357, in high linkage disequilibrium with rs1818613 (r 2 = 0. 94) driving both the observed interaction and the expression quantitative trait loci signals. Future studies are needed to confirm and understand the differential biologic mechanisms by smoking status that contribute to our PDAC findings. SIGNIFICANCE: This large genome-wide interaction study identifies a susceptibility locus on 2q21.3 that significantly modified PDAC risk by smoking status, providing insight into smoking-associated PDAC, with implications for prevention.
  18. Yuan F, Hung RJ, Walsh N, Zhang H, Platz EA, Wheeler W, et al.
    Cancer Res, 2020 Sep 15;80(18):4004-4013.
    PMID: 32641412 DOI: 10.1158/0008-5472.CAN-20-0447
    Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10-6, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC (P = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease (P = 0.22) and primary sclerosing cholangitis (P = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.
  19. Tang H, Jiang L, Stolzenberg-Solomon RZ, Arslan AA, Beane Freeman LE, Bracci PM, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 Sep;29(9):1784-1791.
    PMID: 32546605 DOI: 10.1158/1055-9965.EPI-20-0275
    BACKGROUND: Obesity and diabetes are major modifiable risk factors for pancreatic cancer. Interactions between genetic variants and diabetes/obesity have not previously been comprehensively investigated in pancreatic cancer at the genome-wide level.

    METHODS: We conducted a gene-environment interaction (GxE) analysis including 8,255 cases and 11,900 controls from four pancreatic cancer genome-wide association study (GWAS) datasets (Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case Control Consortium). Obesity (body mass index ≥30 kg/m2) and diabetes (duration ≥3 years) were the environmental variables of interest. Approximately 870,000 SNPs (minor allele frequency ≥0.005, genotyped in at least one dataset) were analyzed. Case-control (CC), case-only (CO), and joint-effect test methods were used for SNP-level GxE analysis. As a complementary approach, gene-based GxE analysis was also performed. Age, sex, study site, and principal components accounting for population substructure were included as covariates. Meta-analysis was applied to combine individual GWAS summary statistics.

    RESULTS: No genome-wide significant interactions (departures from a log-additive odds model) with diabetes or obesity were detected at the SNP level by the CC or CO approaches. The joint-effect test detected numerous genome-wide significant GxE signals in the GWAS main effects top hit regions, but the significance diminished after adjusting for the GWAS top hits. In the gene-based analysis, a significant interaction of diabetes with variants in the FAM63A (family with sequence similarity 63 member A) gene (significance threshold P < 1.25 × 10-6) was observed in the meta-analysis (P GxE = 1.2 ×10-6, P Joint = 4.2 ×10-7).

    CONCLUSIONS: This analysis did not find significant GxE interactions at the SNP level but found one significant interaction with diabetes at the gene level. A larger sample size might unveil additional genetic factors via GxE scans.

    IMPACT: This study may contribute to discovering the mechanism of diabetes-associated pancreatic cancer.

  20. Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, et al.
    Nat Commun, 2018 02 08;9(1):556.
    PMID: 29422604 DOI: 10.1038/s41467-018-02942-5
    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links