Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Abbasi MA, Rehman A, Siddiqui SZ, Hadi N, Mumtaz A, Shah SAA, et al.
    Pak J Pharm Sci, 2019 Jan;32(1):61-68.
    PMID: 30772791
    In the current research work, a series of new N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamides has been synthesized by reacting 1,4-benzozzdioxan-6-amine (1) with 4-chlorobenzenesulfonyl chloride (2) to yield N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamide (3) which was further reacted with different alkyl/aralkyl halides (4a-n) to afford the target compounds (5a-n). Structures of the synthesized compounds were confirmed by IR, 1H-NMR, EI-MS spectral techniques and CHN analysis data. The results of enzyme inhibition showed that the molecules, N-2-phenethyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5j) and N-(1-butyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5d), exhibited moderate inhibitory potential against acetylcholinesterase with IC50 values 26.25±0.11 μM and 58.13±0.15 μM respectively, whereas, compounds N-benzyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5i) and N-(pentane-2-yl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5f) showed moderate inhibition against α-glucosidase enzyme as evident from IC50 values 74.52±0.07 and 83.52±0.08 μM respectively, relative to standards Eserine having IC50 value of 0.04±0.0001 μM for cholinesterases and Acarbose having IC50 value 38.25±0.12 μM for α-glucosidase, respectively.
  2. Sattar A, Aziz-Ur-Rehman -, Abbasi MA, Siddiqui SZ, Rasool S, Ali Shah SA
    Pak J Pharm Sci, 2020 Jul;33(4):1697-1705.
    PMID: 33583804
    A series of propanamide compounds 6a-l was derived by N-substitution reactions, encompassing tosyl, piperidine and 1,3,4-oxadiazole moieties. The intended array of compounds 6a-l was afforded by a series of five steps reaction scheme. 1-Tosylpiperidin-4-carboxylate (1) was synthesized by the reaction of tosyl chloride (a) with ethyl isonipecotate (b) under mild basic conditions. Compound 1 was subjected to nucleophillic substitution by hydrazine to synthesize 1-tosylpiperidin-4-carbohydrazide (2). The compound, 5-(1-tosylpiperidin-4-yl)-1,3,4-oxadiazole-2-thiol (3) was synthesized by intermolecular cyclization of compound 2 by CS2 under strong basic conditions. The target compounds, 6a-l, were finally synthesized from 3 by reacting with different electrophiles, 5a-l, in an aprotic polar solvent with sodium hydride as an activator. The different propanamoyl electrophiles, 5a-l, were synthesized by the reaction of different aromatic and aliphatic amines, 4a-l, with 3-bromopropionyl chloride under mild basic conditions. The structural elucidation was carried out using modern spectroscopic techniques including IR, 1H-NMR and EI-MS. The antibacterial potential of synthesized compounds was assessed against five bacterial strains. Compounds 6a, 6c, 6d, 6e and 6f were found to be potent antibacterial agents.
  3. Abbasi MA, Ijaz M, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jul;33(4):1609-1616.
    PMID: 33583794
    In the planned research work, the nucleophilic substitution reaction of 1-[(E)-3-phenyl-2-propenyl]piperazine (1) was carried out with different sulfonyl chlorides (2a-g) at pH 9-10 to synthesize its different N-sulfonated derivatives (3a-g). The structures of the synthesized compounds were characterized by their proton-nuclear magnetic resonance (1H-NMR), carbon-nuclear magnetic resonance (13C-NMR) and Infra Red (IR) spectral data, along with CHN analysis. The inhibition potential of the synthesized molecules was ascertained against two bacterial pathogenic strains i.e. Bacillus subtilis and Escherichia coli. It was inferred from the results that some of the compounds were very suitable inhibitors of these bacterial strains. Moreover, their cytotoxicity was also profiled and it was outcome that most of these molecules possessed moderate cytotoxicity.
  4. Hussain G, Abbasi MA, Rehman A, Siddiqui SZ, Shah SAA, Ahmad I, et al.
    Pak J Pharm Sci, 2018 May;31(3):857-866.
    PMID: 29716866
    In this work, a new series of 2-[4-(2-furoyl)-1-piperazinyl]-N-aryl/aralkyl acetamides has been synthesized and evaluated for their antibacterial potential. The synthesis was initiated by the reaction of different aryl/aralkyl amines (1a-u) with 2-bromoacetylbromide (2) to obtain N-aryl/aralkyl-2-bromoacetamides (3a-u). Equimolar quantities of different N-aryl/aralkyl-2-bromoacetamides (3a-u) and 2-furoyl-1-piperazine (4) was allowed to react in acetonitrile and in the presence of K2CO3, to form 2-[4-(2-furoyl)-1-piperazinyl]-N-aryl/aralkyl acetamides (5a-u). The structural elucidation was done by EI-MS, IR and 1H-NMR techniques of all the synthesized compounds. All of the synthesized molecules were active against various Gram positive and Gram negative bacterial strains. Among them 5o and 5c showed very excellent MIC values. The cytotoxicity of the molecules was also checked to find their utility as possible therapeutic agents, where 5c (0.51%) and 5g (1.32%) are found to be least toxic in the series.
  5. Abbasi MA, Hassan M, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Shah SAA, et al.
    Bioorg Med Chem, 2018 07 30;26(13):3791-3804.
    PMID: 29903414 DOI: 10.1016/j.bmc.2018.06.005
    The present article describes the synthesis, in vitro urease inhibition and in silico molecular docking studies of a novel series of bi-heterocyclic bi-amides. The synthesis of title compounds was initiated by benzoylation, with benzoyl chloride (1), of the key starter ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (2) in weak basic aqueous medium followed by hydrazide formation, 4, and cyclization with CS2 to reach the parent bi-heterocyclic nucleophile, N-{4-[(5-sulfanyl-1,3,4-oxadiazol-2-yl)methyl]-1,3-thiazol-2-yl}benzamide (5). Various electrophiles, 8a-l, were synthesized by a two-step process and these were finally coupled with 5 to yield the targeted bi-heterocyclic bi-amide molecules, 9a-l. The structures of the newly synthesized products were corroborated by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening of these molecules against urease explored that most of the compounds exhibit potent inhibitory potential against this enzyme. The compound 9j, with IC50 value of 2.58 ± 0.02 µM, exhibited most promising inhibitory activity among the series, relative to standard thiourea having IC50 value of 21.11 ± 0.12 µM. In silico studies fully augmented the experimental enzyme inhibition results. Chemo-informatics analysis showed that synthesized compounds (9a-l) mostly obeyed the Lipinski's rule. Molecular docking study suggested that ligand 9j exhibited good binding energy value (-7.10 kcal/mol) and binds within the active region of target protein. So, on the basis of present investigation, it was inferred that 9j may serve as a novel scaffold for designing more potent urease inhibitors.
  6. Abbasi MA, Hassan M, Aziz-Ur-Rehman, Siddiqui SZ, Shah SAA, Raza H, et al.
    PeerJ, 2018;6:e4962.
    PMID: 29967717 DOI: 10.7717/peerj.4962
    The present study comprises the synthesis of a new series of sulfonamides derived from 4-methoxyphenethylamine (1). The synthesis was initiated by the reaction of 1 with 4-methylbenzenesulfonyl chloride (2) in aqueous sodium carbonate solution at pH 9 to yield N-(4-methoxyphenethyl)-4-methylbenzensulfonamide (3).This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides, (4a-j), using N,N-dimethylformamide (DMF) as solvent and LiH as activator to produce a series of new N-(4-methoxyphenethyl)-N-(substituted)-4-methylbenzenesulfonamides (5a-j). The structural characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. The elemental analysis data was also coherent with spectral data of these molecules. The inhibitory effects on acetylcholinesterase and DPPH were evaluated and it was observed that N-(4-Methoxyphenethyl)-4-methyl-N-(2-propyl)benzensulfonamide (5c) showed acetylcholinesterase inhibitory activity 0.075 ± 0.001 (IC50 0.075 ± 0.001 µM) comparable to Neostigmine methylsulfate (IC50 2.038 ± 0.039 µM).The docking studies of synthesized ligands 5a-j were also carried out against acetylcholinesterase (PDBID 4PQE) to compare the binding affinities with IC50 values. The kinetic mechanism analyzed by Lineweaver-Burk plots demonstrated that compound (5c) inhibits the acetylcholinesterase competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (5c) is 2.5 µM. It was also found from kinetic analysis that derivative 5c irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound 5c may serve as lead structure for the design of more potent acetylcholinesterase inhibitors.
  7. Rehman A, Abbasi MA, Siddiqui SZ, Mohyuddin A, Nadeem S, Shah SA
    Pak J Pharm Sci, 2016 Sep;29(5):1489-1496.
    PMID: 27731801
    New potent organic compounds were synthesized with an aim of good biological activities such as antibacterial and anti-enzymatic. Three series of sulfonamide derivatives were synthesized by treating N-alkyl/aryl substituted amines (2a-f) with 4-chlorobenzensulfonyl chloride (1) to yield N-alkyl/aryl-4-chlorobenzenesulfonamide(3af) that was then derivatized by gearing up with ethyl iodide (4), benzyl chloride (5) and 4-chlorobenzyl chloride (6) using sodium hydride as base to initialize the reaction in a polar aprotic solvent (DMF) to synthesize the derivatives, 7a-f, 8af and 9a-f respectively. Structure elucidation was brought about by IR, 1H-NMR and EIMS spectra for all the synthesized molecules which were evaluated for their antibacterial activities and inhibitory potentials for certain enzymes.
  8. Rehman A, Siddiqa A, Abbasi MA, Siddiqui SZ, Khan SG, Rasool S, et al.
    Pak J Pharm Sci, 2018 Sep;31(5):1783-1790.
    PMID: 30150171
    A number of novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives (6a-l) have been synthesized to evaluate their antibacterial activity. Using aryl/aralkyl carboxylic acids (1a-l) as precursors, 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l) were yielded in good amounts. The derivatives, 4a-l, were subjected to electrophilic substitution reaction on stirring with 6-bromo-3,4-methylenedioxybenzyl chloride (5) in DMF to synthesize the required compounds. All the synthesized molecules were well characterized by IR, 1H-NMR, 13C-NMR and EIMS spectral data and evaluated for antibacterial activity against some bacterial strains of Gram-bacteria. The molecule, 6d, demonstrated the best activity among all the synthesized molecules exhibiting weak to moderate inhibition potential.
  9. Hassan M, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hussain G, Shah SAA, et al.
    J Theor Biol, 2018 12 07;458:169-183.
    PMID: 30243565 DOI: 10.1016/j.jtbi.2018.09.018
    A new series of multifunctional amides has been synthesized having moderate enzyme inhibitory potentials and mild cytotoxicity. 2-Furyl(1-piperazinyl)methanone (1) was coupled with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) to form {4-[(3,5-dichloro-2-hydroxyphenyl)sulfonyl]-1-piperazinyl}(2-furyl)methanone (3). Different elecrophiles were synthesized by the reaction of various un/substituted anilines (4a-o) with 2-bromoacetylbromide (5), 2‑bromo‑N-(un/substituted-phenyl)acetamides (6a-o). Further, equimolar ratios of 3 and 6a-o were allowed to react in the presence of K2CO3 in acetonitrile to form desired multifunctional amides (7a-o). The structural confirmation of all the synthesized compounds was carried out by their EI-MS, IR, 1H NMR and 13C NMR spectral data. Enzyme inhibition activity was performed against acetyl and butyrylcholinestrase enzymes, whereby 7e showed very good activity having IC50 value of 5.54 ± 0.03 and 9.15 ± 0.01 μM, respectively, relative to eserine, a reference standard. Hemolytic activity of the molecules was checked to asertain their cytotoxicity towards red blood cell membrance and it was observed that most of the compounds were not toxic up to certain range. Moreover, chemoinformatic protepties and docking simulation results also showed the significance of 7e as compared to other compounds. Based on in vitro and in silico analysis 7e could be used as a template for the development of new drugs against Alzheimer's disease.
  10. Abbasi MA, Fatima Z, Rehman AU, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):1957-1964.
    PMID: 31813858
    The present study comprises the synthesis of a new series of benzenesulfonamides derived from N-sulfonation of 2-(4-methoxyphenyl)-1-ethanamine (1). The synthesis was initiated by the reaction of 2-(4-methoxyphenyl)-1-ethanamine (1) with benzenesulfonyl chloride (2), to yield N-(4-methoxyphenethyl)benzenesulfonamide (3). This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides (4a-j) in N,N-dimethylformamide (DMF) and in the presence of a weak base lithium hydride (LiH) to obtain various N-(alkyl/aralkyl)-N-(4-methoxyphenethyl) benzenesulfonamides (5a-j). The characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. Elemental analysis also supported this data. The biofilm inhibitory action of all the synthesized compounds was carried out on Escherichia coli and some of the compounds were identified to be very suitable inhibitors of this bacterial strain. Furthermore, the molecules were also tested for their cytotoxicity behavior to assess their utility as less cytotoxic therapeutic agents.
  11. Abbasi MA, Zeb A, Rehman A, Siddiqui SZ, Shah SAA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jan;33(1):41-47.
    PMID: 32122829
    The current research was commenced by reaction of 1,4-benzodioxane-6-amine (1) with 4-nitrobenzenesulfonyl chloride (2) in the presence of aqueous base under dynamic pH control at 9 to yield N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamide (3) which was further reacted with a series of alkyl/aralkyl halides (4a-i) in polar aprotic solvent using catalytic amount of lithium hydride which acts as base to afford some new N-alkyl/aralkyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamides (5a-i). The projected structures of all the synthesized derivatives were characterized by contemporary techniques i.e., IR, 1H-NMR and EIMS. The biofilm Inhibitory action of all synthesized molecules was carried out against Escherichia coli and Bacillus subtilis. It was inferred from their results that 5f and 5e exhibited suitable inhibitory action against the biofilms of these bacterial strains. Moreover, their cytotoxicity was also checked and it was concluded that these synthesized molecules displayed docile cytotoxicity.
  12. Rehman A, Aslam SJ, Abbasi MA, Siddiqui SZ, Rasool S, Shah SAA
    Pak J Pharm Sci, 2019 May;32(3):987-996.
    PMID: 31278711
    Heterocyclic chemistry is an important field of organic chemistry due to therapeutic potential. The minor modification in the structure of poly-functional compounds has great effect on therapeutic ability. In the presented research work, substituted 1,3,4-oxadiazole derivatives, 8a-p, have been synthesized by the reaction of 1-(4-bromomethylbenzenesulfonyl)-3-methylpiperidine (7) and 5-substituted-1,3,4-oxadiazole-2-thiol (4a-p). The 5-substituted-1,3,4-oxadiazole-2-thiol were synthesized by converting carboxylic acids correspondingly into esters, hydrazides and oxadiazoles. Secondly the electrophile, 1-(4-Bromomethylbenzenesulfonyl)-3-methylpiperidine (7), was prepared by the reaction of 3-methylpiperidine with 4-bromomethylbenzenesulfonyl chloride in the presence of water and Na2CO3 under pH of 9-10. The compounds were structurally corroborated through spectroscopic data analysis of IR, EI-MS and 1H-NMR. The screening for antibacterial activity revealed the compounds to be moderate to excellent inhibitors against bacteria under study. Anti-enzymatic activity was assessed against urease enzyme and 1-{[4-({[5-(3-nitrophenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)phenyl]sulfonyl}-3-methylpiperidine (8d) was the most active one.
  13. Abbasi MA, Rehman AU, Siddiqui SZ, Sheeza A, Nazir S, Ahmad I, et al.
    Turk J Pharm Sci, 2017 Apr;14(1):49-55.
    PMID: 32454594 DOI: 10.4274/tjps.84756
    Objectives: The present research work was aimed to synthesize some new sulfonamides bearing 1,4-benzodioxin ring, which might have suitable antibacterial potential and can be used as possible therapeutic agents for inflammatory ailments.

    Materials and Methods: The synthesis was accomplished by the reaction of 2,3-dihydro-1,4-benzodioxin-6-amine (1) with 4-methylbenzenesulfonyl chloride (2) using 10% aqueous Na2CO3 to afford N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (3). Further the parent molecule 3 was reacted with different alkyl/aralkyl halides (4a-e) to achieve N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamides (5a-e), using polar aprotic solvent; N,N-dimethylformamide (DMF) and catalytic amount of lithium hydride as base. The characterization of synthesized compounds was conducted by contemporary spectral techniques e.g., IR, 1H-NMR and EI-MS. Then these molecules were subjected to screening against various bacterial strains and their inhibitory potential against Lipoxygenase was also ascertained.

    Results: The screening results against various Gram-positive and Gram-negative bacterial strains revealed that N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (3), N-(2-bromoethyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5a) and N-(2-phenethyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5b) showed good inhibitory activity as compared to standard Ciprofloxacin. Moreover, N-(3-phenylpropyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5c) and N-(4-chlorobenzyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfon-amide (5e) displayed decent inhibition against lipoxygenase enzyme relative to standard Baicalein.

    Conclusion: On the basis of results obtained it can be concluded that the synthesized sulfonamides may provide an overall indispensable basis to introduce new drug candidates for the cure of inflammatory and other associated diseases.

  14. Abbasi MA, Irshad M, Aziz-Ur-Rehman -, Siddiqui SZ, Nazir M, Ali Shah SA, et al.
    Pak J Pharm Sci, 2020 Sep;33(5):2161-2170.
    PMID: 33824125
    In the presented work, 2,3-dihydro-1,4-benzodioxin-6-amine (1) was reacted with 4-chlorobenzenesulfonyl chloride (2) in presence of aqueous basic aqueous medium to obtain 4-chloro-N-(2,3-dihydro-1,4-benzodioxin-6-yl)benzenesulfonamide (3). In parallel, various un/substituted anilines (4a-l) were treated with bromoacetyl bromide (5) in basified aqueous medium to obtain corresponding 2-bromo-N-(un/substituted)phenylacetamides (6a-l) as electrophiles. Then the compound 3 was finally reacted with these electrophiles, 6a-l, in dimethylformamide (DMF) as solvent and lithium hydride as base and activator to synthesize a variety of 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(un/substituted)phenylacetamides (7a-l). The synthesized compounds were corroborated by IR, 1H-NMR and EI-MS spectral data for structural confirmations. These molecules were then evaluated for their antimicrobial and antifungal activities along with their %age hemolytic activity. Some compounds were found to have suitable antibacterial and antifungal potential, especially the compound 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(3,5-dimethylphenyl)acetamide (7l) exhibited good antimicrobial potential with low value of % hemolytic activity.
  15. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H, et al.
    Arch Pharm (Weinheim), 2019 Mar;352(3):e1800278.
    PMID: 30624805 DOI: 10.1002/ardp.201800278
    Novel bi-heterocyclic benzamides were synthesized by sequentially converting 4-(1H-indol-3-yl)butanoic acid (1) into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3), and a nucleophilic 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4). In a parallel series of reactions, various electrophiles were synthesized by reacting substituted anilines (5a-k) with 4-(chloromethyl)benzoylchloride (6) to afford 4-(chloromethyl)-N-(substituted-phenyl)benzamides (7a-k). Finally, the nucleophilic substitution reaction of 4 was carried out with newly synthesized electrophiles, 7a-k, to acquire the targeted bi-heterocyclic benzamides, 8a-k. The structural confirmation of all the synthesized compounds was done by IR, 1 H NMR, 13 C NMR, EI-MS, and CHN analysis data. The inhibitory effects of these bi-heterocyclic benzamides (8a-k) were evaluated against alkaline phosphatase, and all these molecules were identified as potent inhibitors relative to the standard used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 8b inhibited alkaline phosphatase non-competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 1.15 μM. The computational study was in full agreement with the experimental records and these ligands exhibited good binding energy values. These molecules also exhibited mild cytotoxicity toward red blood cell membranes when analyzed through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds to render normal calcification of bones and teeth.
  16. Virk NA, Rehman A, Abbasi MA, Siddiqui SZ, Ashraf A, Lateef M, et al.
    Pak J Pharm Sci, 2018 Nov;31(6 (Supplementary):2645-2654.
    PMID: 30587474
    Microwave and conventional techniques were employed to synthesize a novel array of compounds 7a-g with 1,2,4-triazole and piperidine rings having great biological importance. The microwave assisted method has a better operational scope with respect to time and yield comparative to the conventional method. 1H-NMR, 13C-NMR and IR techniques were employed to justify the structure of synthesized compounds. The antioxidant, butyrylcholinesterase inhibition and urease inhibition potential of every synthesized compound was evaluated. Every member of the synthesized series was found potent against mentioned activities. Compound 7g was the most active anti-urease agent having IC50 (μM) value 16.5±0.09 even better than the thiourea with an IC50(μM) value of 24.3±0.24. The better urease inhibition potential of 7g was also elaborated and explained by docking and bovine serum albumin (BSA) binding studies.
  17. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Hassan M, et al.
    Bioorg Chem, 2019 05;86:459-472.
    PMID: 30772647 DOI: 10.1016/j.bioorg.2019.01.036
    The present research was designed for the selective synthesis of novel bi-heterocyclic acetamides, 9a-n, and their tyrosinase inhibition to overwhelm the problem of melanogenesis. The structures of newly synthesized compounds were confirmed by spectral techniques such as 1H NMR, 13C NMR, and EI-MS along with elemental analysis. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against tyrosinase and all these molecules were recognized as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which explored that compound, 9h, inhibited tyrosinase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0027 µM. The computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal/mol). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules can be pondered as nontoxic medicinal scaffolds for skin pigmentation and related disorders.
  18. Ramzan MS, Abbasi MA, Rehman A, Siddiqui SZ, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2018 May;31(3(Supplementary)):1051-1059.
    PMID: 29731443
    An electrophile, N-(1,3-thiazol-2-yl)-2-bromoacetamide (3), was synthesized by the reaction of 1,3-thiazole-2-amine (1) and 2-bromoethanoyl bromide (2) in an aqueous medium. A series of carboxylic acids, 7a-j, were converted into 1,3,4-oxadiazole heterocyclic core, through a series of three steps. The final compounds, 8a-j, were synthesized by stirring 7a-j and 3 in an aprotic polar solvent. The structural elucidation of the synthesized compounds was supported by IR, EI-MS, 1H-NMR, and 13C-NMR spectral data. Title compounds were evaluated for enzyme inhibition against cholinesterases and α-glucosidase enzymes and their cytotoxic behavior was monitored using brine shrimp assay. The enzyme inhibitor potential of compounds was supported by molecular docking studies.
  19. Virk NA, Rehman A, Abbasi MA, Siddiqui SZ, Rashid U, Iqbal J, et al.
    Pak J Pharm Sci, 2018 Jul;31(4(Supplementary)):1501-1510.
    PMID: 30058542
    N-(Substituted)-5-(1-(4-methoxyphenylsulfonyl)piperidin-4-yl)-4H-1,2,4-triazol-3-ylthio) acetamide were synthesized by following conventional as well as microwave assisted protocol through five consecutive steps under the impact of various reaction conditions to control the reaction time and the yield of product. Starting from 4-methoxybenzenesulfonyl chloride and ethyl isonipecotate, product 3 was obtained which was converted into product 4 by treating with hydrazine hydrate. In step 3, the product 4 was refluxed with methyl isothiocyanate and KOH to yield compound 5 which was finally treated with variety of N-substituted acetamides to yield an array of different new compounds (8a-k). These synthesized compounds were evaluated for their inhibition potential against bovine carbonic anhydrase (bCA-II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Compound 8g demonstrated good activity against bCA-II, AChE and BChE with IC50 values of 8.69 ± 0.38 μM, 11.87±0.19 μM and 26.01±0.55 μM respectively. SAR studies assisted with molecular docking were carried out to explore the mode of binding of the compounds against the studied enzymes.
  20. Abbasi MA, Raza H, Rehman AU, Siddiqui SZ, Nazir M, Mumtaz A, et al.
    Drug Res (Stuttg), 2019 Feb;69(2):111-120.
    PMID: 30086567 DOI: 10.1055/a-0654-5074
    In this study, a new series of sulfonamides derivatives was synthesized and their inhibitory effects on DPPH and jack bean urease were evaluated. The in silico studies were also applied to ascertain the interactions of these molecules with active site of the enzyme. Synthesis was initiated by the nucleophilic substitution reaction of 2-(4-methoxyphenyl)-1-ethanamine (1: ) with 4-(acetylamino)benzenesulfonyl chloride (2): in aqueous sodium carbonate at pH 9. Precipitates collected were washed and dried to obtain the parent molecule, N-(4-{[(4-methoxyphenethyl)amino]sulfonyl}phenyl)acetamide (3): . Then, this parent was reacted with different alkyl/aralkyl halides, (4A-M: ), using dimethylformamide (DMF) as solvent and LiH as an activator to produce a series of new N-(4-{[(4-methoxyphenethyl)-(substituted)amino]sulfonyl}phenyl)acetamides (5A-M: ). All the synthesized compounds were characterized by IR, EI-MS, 1H-NMR, 13C-NMR and CHN analysis data. All of the synthesized compounds showed higher urease inhibitory activity than the standard thiourea. The compound 5 F: exhibited very excellent enzyme inhibitory activity with IC50 value of 0.0171±0.0070 µM relative to standard thiourea having IC50 value of 4.7455±0.0546 µM. Molecular docking studies suggested that ligands have good binding energy values and bind within the active region of taget protein. Chemo-informatics properties were evaluated by computational approaches and it was found that synthesized compounds mostly obeyed the Lipinski' rule.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links