Displaying all 8 publications

Abstract:
Sort:
  1. Sidek S, Ramli N, Rahmat K, Ramli NM, Abdulrahman F, Tan LK
    Eur J Radiol, 2014 Aug;83(8):1437-41.
    PMID: 24908588 DOI: 10.1016/j.ejrad.2014.05.014
    To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness.
  2. Khil EK, Choi JA, Hwang E, Sidek S, Choi I
    BMC Musculoskelet Disord, 2020 Jun 26;21(1):403.
    PMID: 32590960 DOI: 10.1186/s12891-020-03432-w
    BACKGROUND: To evaluate paraspinal back muscles of asymptomatic subjects using qualitative and quantitative analysis on CT and MRI and correlate the results with demographic data.

    METHODS: Twenty-nine asymptomatic subjects were enrolled prospectively (age: mean 34.31, range 23-50; 14 men, 15 women) from August 2016 to April 2017. Qualitative analysis of muscles was done using Goutallier's system on CT and MRI. Quantitative analysis entailed cross sectional area (CSA) on CT and MRI, Hounsfield unit (HU) on CT, fat fraction using two-point Dixon technique on MRI. Three readers independently analyzed the images; intra- and inter-observer agreements were measured. Linear regression and Spearman's analyses were used for correlation with demographic data.

    RESULTS: CSA values were significantly higher in men (p 

  3. Ramli NM, Sidek S, Rahman FA, Peyman M, Zahari M, Rahmat K, et al.
    Graefes Arch. Clin. Exp. Ophthalmol., 2014 Jun;252(6):995-1000.
    PMID: 24770532 DOI: 10.1007/s00417-014-2622-6
    PURPOSE: To measure optic nerve (ON) volume using 3 T magnetic resonance imaging (MRI), to correlate ON volume with retinal nerve fiber layer (RNFL) thickness, and to determine the viability of MRI as an objective tool in distinguishing glaucoma severity.

    METHODS: In this cross-sectional study, 30 severe glaucoma patients, 30 mild glaucoma patients and 30 age-matched controls were recruited. All subjects underwent standard automated perimetry, RNFL analysis and 3 T MRI examinations. Glaucoma patients were classified according to the Hodapp-Anderson-Parish classification. Pearson's correlation coefficient was used to correlate ON volume with RNFL, and receiver operating curve (ROC) analysis was performed to determine the sensitivity and specificity of ON volume in detecting glaucoma severity.

    RESULTS: Optic nerve volume was significantly lower in both the left and right eyes of the severe glaucoma group (168.70 ± 46.28 mm(3); 167.40 ± 45.36 mm(3)) than in the mild glaucoma group (264.03 ± 78.53 mm(3); 264.76 ± 78.88 mm(3)) and the control group (297.80 ± 71.45 mm(3); 296.56 ± 71.02 mm(3)). Moderate correlation was observed between: RNFL thickness and ON volume (r = 0.51, p <0.001), and in mean deviation of visual field and optic nerve volume (r = 0.60, p 

  4. Sidek S, Ramli N, Rahmat K, Ramli NM, Abdulrahman F, Kuo TL
    Eur Radiol, 2016 Dec;26(12):4404-4412.
    PMID: 26943134
    OBJECTIVE: To compare the metabolite concentration of optic radiation in glaucoma patients with that of healthy subjects using Proton Magnetic Resonance Spectroscopy (1H-MRS).

    METHODS: 1H-MRS utilising the Single-Voxel Spectroscopy (SVS) technique was performed using a 3.0Tesla MRI on 45 optic radiations (15 from healthy subjects, 15 from mild glaucoma patients, and 15 from severe glaucoma patients). A standardised Volume of Interest (VOI) of 20 × 20 × 20 mm was placed in the region of optic radiation. Mild and severe glaucoma patients were categorised based on the Hodapp-Parrish-Anderson (HPA) classification. Mean and multiple group comparisons for metabolite concentration and metabolite concentration ratio between glaucoma grades and healthy subjects were obtained using one-way ANOVA.

    RESULTS: The metabolite concentration and metabolite concentration ratio between the optic radiations of glaucoma patients and healthy subjects did not demonstrate any significant difference (p > 0.05).

    CONCLUSION: Our findings show no significant alteration of metabolite concentration associated with neurodegeneration that could be measured by single-voxel 1H-MRS in optic radiation among glaucoma patients.

    KEY POINTS: • Glaucoma disease has a neurodegenerative component. • Metabolite changes have been observed in the neurodegenerative process in the brain. • Using SVS, no metabolite changes in optic radiation were attributed to glaucoma.

  5. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, et al.
    Curr. Eye Res., 2018 08;43(8):1032-1040.
    PMID: 29676937 DOI: 10.1080/02713683.2018.1467933
    PURPOSE: Retinal ganglion cell apoptosis in glaucoma is associated with elevated levels of endothelin-1 (ET1), a potent vasoconstrictor. ET1-induced retinal ischemia leads to altered expression of nitric oxide synthase (NOS) isoforms leading to increased formation of nitric oxide (NO) and retinal nitrosative stress. Since magnesium (Mg) is known to improve endothelial functions and reduce oxidative stress and taurine (TAU) possesses potent antioxidant properties, we investigated the protective effects of magnesium acetyltaurate (MgAT) against ET1-induced nitrosative stress and retinal damage in rats. We also compared the effects of MgAT with that of TAU alone.

    METHODS: Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining.

    RESULTS: Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone.

    CONCLUSIONS: MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.

  6. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Ismail NM
    Neural Regen Res, 2018 Nov;13(11):2014-2021.
    PMID: 30233077 DOI: 10.4103/1673-5374.239450
    Endothelin-1 (ET-1), a potent vasoconstrictor, is involved in retinal vascular dysregulation and oxidative stress in glaucomatous eyes. Taurine (TAU), a naturally occurring free amino acid, is known for its neuroprotective and antioxidant properties. Hence, we evaluated its neuroprotective properties against ET-1 induced retinal and optic nerve damage. ET-1 was administered intravitreally to Sprague-Dawley rats and TAU was injected as pre-, co- or post-treatment. Animals were euthanized seven days post TAU injection. Retinae and optic nerve were examined for morphology, and were also processed for caspase-3 immunostaining. Retinal redox status was estimated by measuring retinal superoxide dismutase, catalase, glutathione, and malondialdehyde levels using enzyme-linked immuosorbent assay. Histopathological examination showed significantly improved retinal and optic nerve morphology in TAU-treated groups. Morphometric examination showed that TAU pre-treatment provided marked protection against ET-1 induced damage to retina and optic nerve. In accordance with the morphological observations, immunostaining for caspase showed a significantly lesser number of apoptotic retinal cells in the TAU pre-treatment group. The retinal oxidative stress was reduced in all TAU-treated groups, and particularly in the pre-treatment group. The findings suggest that treatment with TAU, particularly pre-treatment, prevents apoptosis of retinal cells induced by ET-1 and hence prevents the changes in the morphology of retina and optic nerve. The protective effect of TAU against ET-1 induced retinal and optic nerve damage is associated with reduced retinal oxidative stress.
  7. Arfuzir NN, Lambuk L, Jafri AJ, Agarwal R, Iezhitsa I, Sidek S, et al.
    Neuroscience, 2016 06 14;325:153-64.
    PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041
    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links