Displaying all 10 publications

Abstract:
Sort:
  1. Peng S, Ying AF, Tai BC, Soo RA
    Transl Lung Cancer Res, 2020 Aug;9(4):1124-1137.
    PMID: 32953491 DOI: 10.21037/tlcr-20-246
    Background: We conducted a meta-analysis to assess the efficacy of immune checkpoint inhibitors (ICIs) (PD-1/L1 and CTLA-4 inhibitors) in first and subsequent lines in East Asians and non-East Asians.

    Methods: We searched PubMed-MEDLINE, Embase and Scopus, from inception to 20 Sep 2019, and reviewed major conferences' abstracts, for randomised controlled trials of ICI in advanced-stage NSCLC (Stage IIIB or IV) without EGFR mutation that reported hazard ratios (HRs) stratified by geographical region including the region "Asia" or "East Asia". The primary outcome measures were overall survival (OS) and progression-free survival (PFS). The pooled HR and its 95% confidence interval (CI) for OS and PFS in East Asians and non-East Asians were calculated using a random effect model and the difference compared using an interaction test.

    Results: A total of 5,465 patients from 7 randomised controlled trials involving CTLA-4 and/or PD-1/L1 inhibitors were included, with 1,740 (32%) East Asians and 3,725 (68%) non-East Asians. ICI was associated with an improvement in OS and PFS for both East Asian (OS HR, 0.74; 95% CI, 0.65-0.85; PFS HR, 0.56; 95% CI, 0.40-0.79) and non-East Asian patients (OS HR, 0.78; 95% CI, 0.72-0.85; PFS HR, 0.69; 95% CI, 0.56-0.85), with no significant difference between the two groups (Pinteraction=0.55 for OS; Pinteraction=0.33 for PFS). Subgroup analyses showed a statistically significant superior PFS (but not OS) for East Asians than non-East Asians in trials that used immune checkpoint inhibitor in the first-line treatment (Pinteraction=0.02). No significant regional difference was found in further subgroups of pure ICI and combination of ICI with chemotherapy.

    Conclusions: There is no significant difference in response to ICI between East Asians and non-East Asians with advanced stage NSCLC, and the statistically significant subgroup difference in PFS in the first line use of ICI may not be clinically significant.

  2. Prabhash K, Tan DSW, Soo RA, Sitthideatphaiboon P, Chen YM, Voon PJ, et al.
    Front Oncol, 2023;13:1117348.
    PMID: 37051534 DOI: 10.3389/fonc.2023.1117348
    INTRODUCTION: Stage III non-small cell lung cancer (NSCLC) is a heterogeneous disease requiring multimodal treatment approaches. KINDLE-Asia, as part of a real world global study, evaluated treatment patterns and associated survival outcomes in stage III NSCLC in Asia.

    METHODS: Retrospective data from 57 centers in patients with stage III NSCLC diagnosed between January 2013 and December 2017 were analyzed. Median progression free survival (mPFS) and median overall survival (mOS) estimates with two sided 95% confidence interval (CI) were determined by applying the Kaplan-Meier survival analysis.

    RESULTS: Of the total 1874 patients (median age: 63.0 years [24 to 92]) enrolled in the Asia subset, 74.8% were men, 54.7% had stage IIIA disease, 55.7% had adenocarcinoma, 34.3% had epidermal growth factor receptor mutations (EGFRm) and 50.3% had programmed death-ligand 1 (PD-L1) expression (i.e. PD-L1 ≥1%). Of the 31 treatment approaches as initial therapy, concurrent chemoradiotherapy (CRT) was the most frequent (29.3%), followed by chemotherapy (14.8%), sequential CRT (9.5%), and radiotherapy (8.5%). Targeted therapy alone was used in 81 patients of the overall population. For the Asia cohort, the mPFS and mOS were 12.8 months (95% CI, 12.2-13.7) and 42.3 months (95% CI, 38.1-46.8), respectively. Stage IIIA disease, Eastern Cooperative Oncology Group ≤1, age ≤65 years, adenocarcinoma histology and surgery/concurrent CRT as initial therapy correlated with better mOS (p < 0.05).

    CONCLUSIONS: The results demonstrate diverse treatment patterns and survival outcomes in the Asian region. The high prevalence of EGFRm and PD-L1 expression in stage III NSCLC in Asia suggests the need for expanding access to molecular testing for guiding treatment strategies with tyrosine kinase inhibitors and immunotherapies in this region.

  3. Wu YL, Planchard D, Lu S, Sun H, Yamamoto N, Kim DW, et al.
    Ann Oncol, 2019 Feb 01;30(2):171-210.
    PMID: 30596843 DOI: 10.1093/annonc/mdy554
    The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of metastatic non-small-cell lung cancer (NSCLC) was published in 2016. At the ESMO Asia Meeting in November 2017 it was decided by both ESMO and the Chinese Society of Clinical Oncology (CSCO) to convene a special guidelines meeting immediately after the Chinese Thoracic Oncology Group Annual Meeting 2018, in Guangzhou, China. The aim was to adapt the ESMO 2016 guidelines to take into account the ethnic differences associated with the treatment of metastatic NSCLC cancer in Asian patients. These guidelines represent the consensus opinions reached by experts in the treatment of patients with metastatic NSCLC representing the oncological societies of China (CSCO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), Singapore (SSO) and Taiwan (TOS). The voting was based on scientific evidence, and was independent of both the current treatment practices and the drug availability and reimbursement situations in the six participating Asian countries. During the review process, the updated ESMO 2018 Clinical Practice Guidelines for metastatic NSCLC were released and were also considered, during the final stages of the development of the Pan-Asian adapted Clinical Practice Guidelines.
  4. Ang YLE, Ho GF, Soo RA, Sundar R, Tan SH, Yong WP, et al.
    BMC Cancer, 2020 Nov 17;20(1):1118.
    PMID: 33203399 DOI: 10.1186/s12885-020-07616-4
    BACKGROUND: We previously reported that low-dose, short-course sunitinib prior to neoadjuvant doxorubicin-cyclophosphamide (AC) normalised tumour vasculature and improved perfusion, but resulted in neutropenia and delayed subsequent cycles in breast cancer patients. This study combined sunitinib with docetaxel, which has an earlier neutrophil nadir than AC.

    METHODS: Patients with advanced solid cancers were randomized 1:1 to 3-weekly docetaxel 75 mg/m2, with or without sunitinib 12.5 mg daily for 7 days prior to docetaxel, stratified by primary tumour site. Primary endpoints were objective-response (ORR:CR + PR) and clinical-benefit rate (CBR:CR + PR + SD); secondary endpoints were toxicity and progression-free-survival (PFS).

    RESULTS: We enrolled 68 patients from 2 study sites; 33 received docetaxel-sunitinib and 35 docetaxel alone, with 33 breast, 25 lung and 10 patients with other cancers. There was no difference in ORR (30.3% vs 28.6%, p = 0.432, odds-ratio [OR] 1.10, 95% CI 0.38-3.18); CBR was lower in the docetaxel-sunitinib arm (48.5% vs 71.4%, p = 0.027 OR 0.37, 95% CI 0.14-1.01). Median PFS was shorter in the docetaxel-sunitinib arm (2.9 vs 4.9 months, hazard-ratio [HR] 2.00, 95% CI 1.15-3.48, p = 0.014) overall, as well as in breast (4.2 vs 5.6 months, p = 0.048) and other cancers (2.0 vs 5.3 months, p = 0.009), but not in lung cancers (2.9 vs 4.1 months, p = 0.597). Median OS was similar in both arms overall (9.9 vs 10.5 months, HR 0.92, 95% CI 0.51-1.67, p = 0.789), and in the breast (18.9 vs 25.8 months, p = 0.354), lung (7.0 vs 6.7 months, p = 0.970) and other cancers (4.5 vs 8.8 months, p = 0.449) subgroups. Grade 3/4 haematological toxicities were lower with docetaxel-sunitinib (18.2% vs 34.3%, p = 0.132), attributed to greater discretionary use of prophylactic G-CSF (90.9% vs 63.0%, p = 0.024). Grade 3/4 non-haematological toxicities were similar (12.1% vs 14.3%, p = 0.792).

    CONCLUSIONS: The addition of sunitinib to docetaxel was well-tolerated but did not improve outcomes. The possible negative impact in metastatic breast cancer patients is contrary to results of adding sunitinib to neoadjuvant AC. These negative results suggest that the intermittent administration of sunitinib in the current dose and schedule with docetaxel in advanced solid tumours, particularly breast cancers, is not beneficial.

    TRIAL REGISTRATION: The study was registered ( NCT01803503 ) prospectively on clinicaltrials.gov on 4th March 2013.

  5. Tan WL, Chua KLM, Lin CC, Lee VHF, Tho LM, Chan AW, et al.
    J Thorac Oncol, 2020 03;15(3):324-343.
    PMID: 31733357 DOI: 10.1016/j.jtho.2019.10.022
    Stage III NSCLC represents a heterogeneous disease for which optimal treatment continues to pose a clinical challenge. Recent changes in the American Joint Commission on Cancer staging to the eighth edition has led to a shift in TNM stage grouping and redefined the subcategories (IIIA-C) in stage III NSCLC for better prognostication. Although concurrent chemoradiotherapy has remained standard-of-care for stage III NSCLC for almost 2 decades, contemporary considerations include the impact of different molecular subsets of NSCLC, and the roles of tyrosine kinase inhibitors post-definitive therapy and of immune checkpoint inhibitors following chemoradiotherapy. With rapid evolution of diagnostic algorithms and expanding treatment options, the need for interdisciplinary input involving multiple specialists (medical oncologists, radiation oncologists, pulmonologists, radiologists, pathologists and thoracic surgeons) has become increasingly important. The unique demographics of Asian NSCLC pose further challenges when applying clinical trial data into clinical practice. This includes differences in smoking rates, prevalence of oncogenic driver mutations, and access to health care resources including molecular testing, prompting the need for critical review of existing data and identification of current gaps. In this expert consensus statement by the Asian Thoracic Oncology Research Group, an interdisciplinary group of experts representing Hong Kong, Korea, Japan, Taiwan, Singapore, Thailand, Malaysia, and Mainland China was convened. Standard clinical practices for stage III NSCLC across different Asian countries were discussed from initial diagnosis and staging through to multi-modality approaches including surgery, chemotherapy, radiation, targeted therapies, and immunotherapy.
  6. Liam CK, Ahmad AR, Hsia TC, Zhou J, Kim DW, Soo RA, et al.
    Clin Cancer Res, 2023 May 15;29(10):1879-1886.
    PMID: 36971777 DOI: 10.1158/1078-0432.CCR-22-3318
    PURPOSE: The final analyses of the INSIGHT phase II study evaluating tepotinib (a selective MET inhibitor) plus gefitinib versus chemotherapy in patients with MET-altered EGFR-mutant NSCLC (data cut-off: September 3, 2021).

    PATIENTS AND METHODS: Adults with advanced/metastatic EGFR-mutant NSCLC, acquired resistance to first-/second-generation EGFR inhibitors, and MET gene copy number (GCN) ≥5, MET:CEP7 ≥2, or MET IHC 2+/3+ were randomized to tepotinib 500 mg (450 mg active moiety) plus gefitinib 250 mg once daily, or chemotherapy. Primary endpoint was investigator-assessed progression-free survival (PFS). MET-amplified subgroup analysis was preplanned.

    RESULTS: Overall (N = 55), median PFS was 4.9 months versus 4.4 months [stratified HR, 0.67; 90% CI, 0.35-1.28] with tepotinib plus gefitinib versus chemotherapy. In 19 patients with MET amplification (median age 60.4 years; 68.4% never-smokers; median GCN 8.8; median MET/CEP7 2.8; 89.5% with MET IHC 3+), tepotinib plus gefitinib improved PFS (HR, 0.13; 90% CI, 0.04-0.43) and overall survival (OS; HR, 0.10; 90% CI, 0.02-0.36) versus chemotherapy. Objective response rate was 66.7% with tepotinib plus gefitinib versus 42.9% with chemotherapy; median duration of response was 19.9 months versus 2.8 months. Median duration of tepotinib plus gefitinib was 11.3 months (range, 1.1-56.5), with treatment >1 year in six (50.0%) and >4 years in three patients (25.0%). Seven patients (58.3%) had treatment-related grade ≥3 adverse events with tepotinib plus gefitinib and five (71.4%) had chemotherapy.

    CONCLUSIONS: Final analysis of INSIGHT suggests improved PFS and OS with tepotinib plus gefitinib versus chemotherapy in a subgroup of patients with MET-amplified EGFR-mutant NSCLC, after progression on EGFR inhibitors.

  7. Ahn MJ, Mendoza MJL, Pavlakis N, Kato T, Soo RA, Kim DW, et al.
    Clin Lung Cancer, 2022 Dec;23(8):670-685.
    PMID: 36151006 DOI: 10.1016/j.cllc.2022.07.012
    Non-small cell lung cancer (NSCLC) is a heterogeneous disease, with many oncogenic driver mutations, including de novo mutations in the Mesenchymal Epithelial Transition (MET) gene (specifically in Exon 14 [ex14]), that lead to tumourigenesis. Acquired alterations in the MET gene, specifically MET amplification is also associated with the development of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in patients with EGFR-mutant NSCLC. Although MET has become an actionable biomarker with the availability of MET-specific inhibitors in selected countries, there is differential accessibility to diagnostic platforms and targeted therapies across countries in Asia-Pacific (APAC). The Asian Thoracic Oncology Research Group (ATORG), an interdisciplinary group of experts from Australia, Hong Kong, Japan, Korea, Mainland China, Malaysia, the Philippines, Singapore, Taiwan, Thailand and Vietnam, discussed testing for MET alterations and considerations for using MET-specific inhibitors at a consensus meeting in January 2022, and in subsequent offline consultation. Consensus recommendations are provided by the ATORG group to address the unmet need for standardised approaches to diagnosing MET alterations in NSCLC and for using these therapies. MET inhibitors may be considered for first-line or second or subsequent lines of treatment for patients with advanced and metastatic NSCLC harbouring MET ex14 skipping mutations; MET ex14 testing is preferred within multi-gene panels for detecting targetable driver mutations in NSCLC. For patients with EGFR-mutant NSCLC and MET amplification leading to EGFR TKI resistance, enrolment in combination trials of EGFR TKIs and MET inhibitors is encouraged.
  8. Cho BC, Ahn MJ, Kang JH, Soo RA, Reungwetwattana T, Yang JC, et al.
    J Clin Oncol, 2023 Sep 10;41(26):4208-4217.
    PMID: 37379502 DOI: 10.1200/JCO.23.00515
    PURPOSE: Lazertinib is a potent, CNS-penetrant, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. This global, phase III study (LASER301) compared lazertinib versus gefitinib in treatment-naïve patients with EGFR-mutated (exon 19 deletion [ex19del]/L858R) locally advanced or metastatic non-small-cell lung cancer (NSCLC).

    PATIENTS AND METHODS: Patients were 18 years and older with no previous systemic anticancer therapy. Neurologically stable patients with CNS metastases were allowed. Patients were randomly assigned 1:1 to lazertinib 240 mg once daily orally or gefitinib 250 mg once daily orally, stratified by mutation status and race. The primary end point was investigator-assessed progression-free survival (PFS) by RECIST v1.1.

    RESULTS: Overall, 393 patients received double-blind study treatment across 96 sites in 13 countries. Median PFS was significantly longer with lazertinib than with gefitinib (20.6 v 9.7 months; hazard ratio [HR], 0.45; 95% CI, 0.34 to 0.58; P < .001). The PFS benefit of lazertinib over gefitinib was consistent across all predefined subgroups. The objective response rate was 76% in both groups (odds ratio, 0.99; 95% CI, 0.62 to 1.59). Median duration of response was 19.4 months (95% CI, 16.6 to 24.9) with lazertinib versus 8.3 months (95% CI, 6.9 to 10.9) with gefitinib. Overall survival data were immature at the interim analysis (29% maturity). The 18-month survival rate was 80% with lazertinib and 72% with gefitinib (HR, 0.74; 95% CI, 0.51 to 1.08; P = .116). Observed safety of both treatments was consistent with their previously reported safety profiles.

    CONCLUSION: Lazertinib demonstrated significant efficacy improvement compared with gefitinib in the first-line treatment of EGFR-mutated advanced NSCLC, with a manageable safety profile.

  9. Reungwetwattana T, Cho BC, Lee KH, Pang YK, Fong CH, Kang JH, et al.
    J Thorac Oncol, 2023 Oct;18(10):1351-1361.
    PMID: 37702629 DOI: 10.1016/j.jtho.2023.06.016
    INTRODUCTION: Lazertinib is a third-generation central nervous system-penetrant tyrosine kinase inhibitor targeting mutant EGFR in NSCLC. Lazertinib exhibited improved efficacy versus gefitinib in the LASER301 study; this subset analysis compared lazertinib with gefitinib among Asian patients.

    METHODS: The phase 3 LASER301 study evaluated lazertinib efficacy and safety in treatment-naive patients with EGFR-mutated (exon 19 deletion or L858R) locally advanced or metastatic NSCLC. Patients were randomized one-to-one and received either lazertinib or gefitinib. The primary end point was investigator-assessed progression-free survival using Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points included overall survival, objective response rate, duration of response, and safety.

    RESULTS: Between February 13, 2020, and July 29, 2022, among 258 patients of Asian descent, the median progression-free survival was significantly longer with lazertinib than gefitinib (20.6 versus 9.7 mo; hazard ratio: 0.46; 95% confidence interval [CI]: 0.34-0.63, p < 0.001), and the benefit was consistent across predefined subgroups (exon 19 deletion, L858R, baseline central nervous system metastases). Objective response rate and disease control rates were similar between treatment groups. The median duration of response was 19.4 months (95% CI: 16.6-24.9) versus 9.6 months (95% CI: 6.9-12.4) in the lazertinib versus gefitinib group. Adverse event rates in Asian patients were comparable with the overall LASER301 population. Adverse events leading to discontinuation in the lazertinib and gefitinib groups were 13% and 12%, respectively.

    CONCLUSIONS: In LASER301, efficacy and safety results in Asian patients were consistent with the overall population. Lazertinib exhibited better efficacy than gefitinib in Asian patients with a tolerable safety profile.

  10. Soo RA, Cho BC, Kim JH, Ahn MJ, Lee KH, Zimina A, et al.
    J Thorac Oncol, 2023 Dec;18(12):1756-1766.
    PMID: 37865896 DOI: 10.1016/j.jtho.2023.08.017
    INTRODUCTION: Lazertinib, a third-generation mutant-selective EGFR tyrosine kinase inhibitor, improved progression-free survival compared with gefitinib in the phase 3 LASER301 study (ClinicalTrials.gov Identifier: NCT04248829). Here, we report the efficacy of lazertinib and gefitinib in patients with baseline central nervous system (CNS) metastases.

    METHODS: Treatment-naive patients with EGFR-mutated advanced NSCLC were randomized one-to-one to lazertinib (240 mg/d) or gefitinib (250 mg/d). Patients with asymptomatic or stable CNS metastases were included if any planned radiation, surgery, or steroids were completed more than 2 weeks before randomization. For patients with CNS metastases confirmed at screening or subsequently suspected, CNS imaging was performed every 6 weeks for 18 months, then every 12 weeks. End points assessed by blinded independent central review and Response Evaluation Criteria in Solid Tumors version 1.1 included intracranial progression-free survival, intracranial objective response rate, and intracranial duration of response.

    RESULTS: Of the 393 patients enrolled in LASER301, 86 (lazertinib, n = 45; gefitinib, n = 41) had measurable and or non-measurable baseline CNS metastases. The median intracranial progression-free survival in the lazertinib group was 28.2 months (95% confidence interval [CI]: 14.8-28.2) versus 8.4 months (95% CI: 6.7-not reached [NR]) in the gefitinib group (hazard ratio = 0.42, 95% CI: 0.20-0.89, p = 0.02). Among patients with measurable CNS lesions, the intracranial objective response rate was numerically higher with lazertinib (94%; n = 17) versus gefitinib (73%; n = 11, p = 0.124). The median intracranial duration of response with lazertinib was NR (8.3-NR) versus 6.3 months (2.8-NR) with gefitinib. Tolerability was similar to the overall LASER301 population.

    CONCLUSIONS: In patients with CNS metastases, lazertinib significantly improved intracranial progression-free survival compared with gefitinib, with more durable responses.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links