Displaying all 11 publications

  1. Huwaidi A, Pathak N, Syahir A, Ikeno S
    Biochem Biophys Res Commun, 2018 09 05;503(2):910-914.
    PMID: 29928878 DOI: 10.1016/j.bbrc.2018.06.095
    Ultraviolet (UV) radiation causes damage in all living organisms, including DNA damage that leads to cell death. Herein, we provide a new technique for UV radiation protection through intracellular short peptide expression. The late embryogenesis abundant (LEA) peptide, which functions as a shield that protects macromolecules from various abiotic stress, was obtained from the Polypedilum vanderplanki group 3 LEA protein. Recombinant Escherichia coli BL21 (DE3) expressing functional LEA short peptide in vivo were exposed to UVA and UVC radiation for 4, 6, and 8 h. E. coli transformants expressing the LEA peptide showed higher cell viability under both UVA and UVC treatment at all time points as compared with that of the control. Furthermore, the cells expressing LEA peptide showed a higher number of colony-forming units per dilution under UVA and UVC treatment. These results suggested that expression of the short peptide could be useful for the development of genetically modified organisms and in applications that require resilience of organisms to UV radiation.
  2. Barzegar Behrooz A, Syahir A, Ahmad S
    J Drug Target, 2019 03;27(3):257-269.
    PMID: 29911902 DOI: 10.1080/1061186X.2018.1479756
    CD133 (prominin-1), a pentaspan membrane glycoprotein, is one of the most well-characterized biomarkers used for the isolation of cancer stem cells (CSCs). The presence of CSCs is one of the main causes of tumour reversal and resilience. Accumulating evidence has shown that CD133 might be responsible for CSCs tumourigenesis, metastasis and chemoresistance. It is now understood that CD133 interacts with the Wnt/β-catenin and PI3K-Akt signalling pathways. Moreover, CD133 can upregulate the expression of the FLICE-like inhibitory protein (FLIP) in CD133-positive cells, inhibiting apoptosis. In addition, CD133 can increase angiogenesis by activating the Wnt signalling pathway and increasing the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin-8. Therefore, CD133 could be considered to be an 'Achilles' heel' for CSCs, because by inhibiting this protein, the signalling pathways that are involved in cell proliferation will also be inhibited. By understanding the molecular biology of CD133, we can not only isolate stem cells but can also utilise it as a therapeutic strategy. In this review, we summarise new insights into the fundamental cell biology of CD133 and discuss the involvement of CD133 in metastasis, metabolism, tumourigenesis, drug-resistance, apoptosis and autophagy.
  3. Syahir A, Kajikawa K, Mihara H
    Protein Pept Lett, 2018;25(1):34-41.
    PMID: 29237369 DOI: 10.2174/0929866525666171214111957
    BACKGROUND: Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio.

    OBJECTIVES: This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality.

    METHODS: In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes.

    RESULTS: As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method.

    CONCLUSION: We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions.

  4. Jamadon NK, Busairi N, Syahir A
    Protein Pept Lett, 2018;25(1):90-95.
    PMID: 29237368 DOI: 10.2174/0929866525666171214111503
    BACKGROUND: Mercury (II) ion, Hg2+ is among the most common pollutants with the ability to affect the environment. The implications of their elevation in the environment are mainly due to the industrialization and urbanization process. Current methods of Hg2+ detection primarily depend on sophisticated and expensive instruments. Hence, an alternative and practical way of detecting Hg2+ ions is needed to go beyond these limitations. Here, we report a detection method that was developed using an inhibitive enzymatic reaction that can be monitored through a smartphone. Horseradish peroxidase (HRP) converted 4-aminoantipyrene (4-AAP) into a red colored product which visible with naked eye. A colorless product, on the other hand, was produced indicating the presence of Hg2+ that inhibit the reaction.

    OBJECTIVES: The aim of this study is to develop a colorimetric sensor to detect Hg2+ in water sources using HRP inhibitive assay. The system can be incorporated with a mobile app to make it practical for a prompt in-situ analysis.

    METHODS: HRP enzyme was pre-incubated with different concentration of Hg2+ at 37°C for 1 hour prior to the addition of chromogen. The mix of PBS buffer, 4-AAP and phenol which act as a chromogen was then added to the HRP enzyme and was incubated for 20 minutes. Alcohol was added to stop the enzymatic reaction, and the change of colour were observed and analyse using UV-Vis spectrophotometer at 520 nm wavelength. The results were then analysed using GraphPad PRISM 4 for a non-linear regression analysis, and using Mathematica (Wolfram) 10.0 software for a hierarchical cluster analysis. The samples from spectroscopy measurement were directly used for dynamic light scattering (DLS) evaluation to evaluate the changes in HRP size due to Hg2+ malfunctionation. Finally, molecular dynamic simulations comparing normal and malfunctioned HRP were carried out to investigate structural changes of the HRP using YASARA software.

    RESULTS: Naked eye detection and data from UV-Vis spectroscopy showed good selectivity of Hg2+ over other metal ions as a distinctive color of Hg2+ is observed at 0.5 ppm with the IC50 of 0.290 ppm. The mechanism of Hg2+ inhibition towards HRP was further validated using a dynamic light scattering (DLS) and molecular dynamics (MD) simulation to ensure that there is a conformational change in HRP size due to the presence of Hg2+ ions. The naked eye detection can be quantitatively determined using a smartphone app namely ColorAssist, suggesting that the detection signal does not require expensive instruments to be quantified.

    CONCLUSION: A naked-eye colorimetric sensor for mercury ions detection was developed. The colour change due to the presence of Hg2+ can be easily distinguished using an app via a smartphone. Thus, without resorting to any expensive instruments that are mostly laboratory bound, Hg2+ can be easily detected at IC50 value of 0.29 ppm. This is a promising alternative and practical method to detect Hg2+ in the environment.

  5. Syahir A, Tomizaki KY, Kajikawa K, Mihara H
    Methods Mol Biol, 2016;1352:97-110.
    PMID: 26490470 DOI: 10.1007/978-1-4939-3037-1_8
    The importance of protein detection system for protein functions analyses in recent post-genomic era is rising with the emergence of label-free protein detection methods. We are focusing on a simple and practical label-free optical-detection method called anomalous reflection (AR) of gold. When a molecular layer forms on the gold surface, significant reduction in reflectivity can be observed at wavelengths of 400-500 nm. This allows the detection of molecular interactions by monitoring changes in reflectivity. In this chapter, we describe the AR method with three different application platforms: (1) gold, (2) gold containing alloy/composite (AuAg2O), and (3) metal-insulator-metal (MIM) thin layers. The AuAg2O composite and MIM are implemented as important concepts for signal enhancement process for the AR technique. Moreover, the observed molecular adsorption and activity is aided by a three-dimensional surface geometry, performed using poly(amidoamine) or PAMAM dendrimer modification. The described system is suitable to be used as a platform for high-throughput detection system in a chip format.
  6. Hassn Mesrati M, Behrooz AB, Y Abuhamad A, Syahir A
    Cells, 2020 05 16;9(5).
    PMID: 32429463 DOI: 10.3390/cells9051236
    Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
  7. Ngalimat MS, Raja Abd Rahman RNZ, Yusof MT, Syahir A, Sabri S
    PeerJ, 2019;7:e7478.
    PMID: 31497388 DOI: 10.7717/peerj.7478
    Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by Bacillus aryabhattai, Bacillus oleronius, Bacillus stratosphericus, Bacillus altitudinis, Bacillus amyloliquefaciens, Bacillus nealsonii, Bacillus toyonensis, Bacillus subtilis, Bacillus safensis, Bacillus pseudomycoides, Enterobacter asburiae, Enterobacter cloacae, Pantoea dispersa and Streptomyces kunmingensis. Phenotypic profile of 15 bacterial isolates using GEN III MicroPlate™ system revealed most of the isolates as capable to utilise carbohydrates as well as amino acids and carboxylic acids and derivatives. Proteolytic, lipolytic and cellulolytic activities as determined by enzymatic assays were detected in Bacillus stratosphericus PD6, Bacillus amyloliquefaciens PD9, Bacillus subtilis BD3 and Bacillus safensis BD9. Bacillus amyloliquefaciens PD9 showed broad-spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria in vitro. The multienzymes and antimicrobial activities exhibited by the bacterial isolates from H. itama nest products could provide potential sources of enzymes and antimicrobial compounds for biotechnological applications.
  8. Mohd Rafie AZ, Syahir A, Wan Ahmad WAN, Mustafa MZ, Mariatulqabtiah AR
    PMID: 30643535 DOI: 10.1155/2018/6371582
    Heterotrigona itama is a common stingless bee species found in Southeast Asia. Studies on the health benefits of its honey are limited in comparison with other stingless bee species. This study examines the antiobesity benefits found in stingless bee honey (SBH) from H. itama. The parameters used to measure the benefits were weight change, morphological structures, and biochemical characteristics. The research was conducted by using rats that were given a high-fat diet (HFD). In total 48 male Sprague Dawley (SD) rats were given a formulated HFD to increase the levels of obesity, the HFD was administered with a value of 0.68 g/cm2. The duration of the treatment was six weeks, and the results show that the induction obesity using the HFD was successful. Following this, the rats were then treated with SBH (at dosages of 1000 mg/kg, 750 mg/kg or 500 mg/kg), with orlistat or with a placebo. Compared with typical obesity treatment methods, the one that used the three dosages of SBH showed a higher reduction in body mass index (BMI), percentage of body weight gain, adiposity index, and relative organ weight (ROW). The levels of liver enzymes (ALT, AST, and ALP) were also significantly lower in SBH-treated groups. The levels of triglycerides and LDL-cholesterol were significantly lower, while the level of HDL-cholesterol was significantly higher in comparison with the control obese group. In terms of morphological structures, the number of adipocyte cells was reduced, and the hepatocytes found in the liver were less prone to rupturing when treated with SBH. In conclusion, the administration of SBH led to an improvement in indicators associated with obesity reduction. SBH also possesses a hepatoprotective potential which can reduce the health risks related to obesity.
  9. Syamila N, Syahir A, Ikeno S, Tan WS, Ahmad H, Ahmad Tajudin A
    Colloids Surf B Biointerfaces, 2020 Jan 01;185:110623.
    PMID: 31735420 DOI: 10.1016/j.colsurfb.2019.110623
    Bio-nanogate involves synthesized or natural molecules as a 'gate' towards bioreceptors and responds upon the presence of targeted analytes in nanoscale dimension. Development of bio-nanogate improves analyte selectivity and signal response across various types of biosensors. The versatility of PAMAM dendrimers to form conjugates with guest molecules, such as proteins can be utilized in forming a bio-nanogate. PAMAM interaction with peptide bioreceptor for antibody detection is of interest in this study. This study investigated the interaction of synthesized immunogenic 'a' determinant (aD) region of hepatitis B virus surface antigen (HBsAg) with PAMAM G4 and anti-HBsAg antibody, as a potential bio-nanogate for anti-HBsAg detection. The aD peptide fused with maltose binding protein (MBP), was confirmed with Western blotting. Nano-Differential Scanning Fluorimetry (nano-DSF) study revealed that the interaction of MBP-aD with anti-HBsAg indicated a higher thermal stability as compared to its interaction with PAMAM G4. Electrochemical impedance spectroscopy showed that a higher binding constant of MBP-aD interaction with anti-HBsAg (0.92 μM-1) was observed at maximum saturation, as compared with PAMAM G4 (0.07 μM-1). Thermodynamic parameters demonstrated that MBP-aD interacted with anti-HBsAg and PAMAM G4, through van der Waals and hydrogen bonding. These analyses suggest that the weak interaction of MBP-aD and PAMAM G4 may form a potential bio-nanogate. It is hypothesized that the presence of anti-HBsAg has a higher affinity towards MBP-aD which may displace PAMAM G4 in the anti-HBsAg detection system. This interaction study is crucial as an initial platform of using peptide-PAMAM as a bio-nanogate in an antibody detection system.
  10. Wong CL, Yong CY, Muhamad A, Syahir A, Omar AR, Sieo CC, et al.
    Appl Microbiol Biotechnol, 2018 May;102(9):4131-4142.
    PMID: 29564523 DOI: 10.1007/s00253-018-8921-9
    Foot-and-mouth disease (FMD) is a major threat to the livestock industry worldwide. Despite constant surveillance and effective vaccination, the perpetual mutations of the foot-and-mouth disease virus (FMDV) pose a huge challenge to FMD diagnosis. The immunodominant region of the FMDV VP1 protein (residues 131-170) displayed on phage T7 has been used to detect anti-FMDV in bovine sera. In the present study, the functional epitope was further delineated using amino acid sequence alignment, homology modelling and phage display. Two highly conserved regions (VP1145-152 and VP1159-170) were identified among different FMDV serotypes. The coding regions of these two epitopes were fused separately to the T7 genome and displayed on the phage particles. Interestingly, chimeric phage displaying the VP1159-170 epitope demonstrated a higher antigenicity than that displaying the VP1131-170 epitope. By contrast, phage T7 displaying the VP1145-152 epitope did not react significantly with the anti-FMDV antibodies in vaccinated bovine sera. This study has successfully identified a smaller functional epitope, VP1159-170, located at the C-terminal end of the structural VP1 protein. The phage T7 displaying this shorter epitope is a promising diagnostic reagent to detect anti-FMDV antibodies in vaccinated animals.
  11. Mustapha Kamil Y, Al-Rekabi SH, Yaacob MH, Syahir A, Chee HY, Mahdi MA, et al.
    Sci Rep, 2019 09 17;9(1):13483.
    PMID: 31530893 DOI: 10.1038/s41598-019-49891-7
    The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links