Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Kadir MR, Syahrom A, Ochsner A
    Med Biol Eng Comput, 2010 May;48(5):497-505.
    PMID: 20224954 DOI: 10.1007/s11517-010-0593-2
    Human bones can be categorised into one of two types--the compact cortical and the porous cancellous. Whilst the cortical is a solid structure macroscopically, the structure of cancellous bone is highly complex with plate-like and strut-like structures of various sizes and shapes depending on the anatomical site. Reconstructing the actual structure of cancellous bone for defect filling is highly unfeasible. However, the complex structure can be simplified into an idealised structure with similar properties. In this study, two idealised architectures were developed based on morphological indices of cancellous bone: the tetrakaidecahedral and the prismatic. The two architectures were further subdivided into two types of microstructure, the first consists of struts only and the second consists of a combination of plates and struts. The microstructures were transformed into finite element models and displacement boundary condition was applied to all four idealised cancellous models with periodic boundary conditions. Eight unit cells extracted from the actual cancellous bone obtained from micro-computed tomography were also analysed with the same boundary conditions. Young's modulus values were calculated and comparison was made between the idealised and real cancellous structures. Results showed that all models with a combination of plates and struts have higher rigidity compared to the one with struts only. Values of Young's modulus from eight unit cells of cancellous bone varied from 42 to 479 MPa with an average of 234 MPa. The prismatic architecture with plates and rods closely resemble the average stiffness of a unit cell of cancellous bone.
  2. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Biol Eng Comput, 2011 Dec;49(12):1393-403.
    PMID: 21947767 DOI: 10.1007/s11517-011-0833-0
    The relationship between microarchitecture to the failure mechanism and mechanical properties can be assessed through experimental and computational methods. In this study, both methods were utilised using bovine cadavers. Twenty four samples of cancellous bone were extracted from fresh bovine and the samples were cleaned from excessive marrow. Uniaxial compression testing was performed with displacement control. After mechanical testing, each specimen was ashed in a furnace. Four of the samples were exemplarily scanned using micro-computed tomography (μCT) and three dimensional models of the cancellous bones were reconstructed for finite element simulation. The mechanical properties and the failure modes obtained from numerical simulations were then compared to the experiments. Correlations between microarchitectural parameters to the mechanical properties and failure modes were then made. The Young's modulus correlates well with the bone volume fraction with R² = 0.615 and P value 0.013. Three different types of failure modes of cancellous bone were observed: oblique fracture (21.7%), perpendicular global fracture (47.8%), and scattered localised fracture (30.4%). However, no correlations were found between the failure modes to the morphological parameters. The percentage of error between computer predictions and the actual experimental test was from 6 to 12%. These mechanical properties and information on failure modes can be used for the development of synthetic cancellous bone.
  3. Yusof AAM, Harun MN, Nasruddin FA, Syahrom A
    Int J Sports Med, 2020 Aug 25.
    PMID: 32842154 DOI: 10.1055/a-1231-5268
    According to numerous studies, rowing performance is influenced by several factors including rower's biomechanics, rower's physiology, the force generated and stroke style. However, there is a missing gap linking such factors with rowing performance in the available literature. This paper aims to investigate the rowing mechanism in terms of rower anthropometry and physiology, which can impact its biomechanics and performance. The corresponding hydrodynamic force generated by the oar blade to accelerate the boat is also considered in the current study. To test the objectives, systematical online searching was conducted in search of the inclusion literature criteria. All included studies used Preferred Reporting item for Systematic Review and Meta-analysis (PRISMA) guidelines to obtain the final collection of articles for this review. In order to rate the quality of the articles, risk bias assessment was performed. A total of 35 studies were included in the assessment. The studies discussed the aspects of anthropometry and physiological of the rower, the biomechanics of the rower, corresponding hydrodynamic force on the oar blade and the rowing mechanism concerning boat performance. Based on the information obtained, an understanding of the important aspects of the rowing mechanism was achieved to provide an update for comprehensive improvement.
  4. Wahab AHA, Saad APM, Syahrom A, Kadir MRA
    Comput Methods Biomech Biomed Engin, 2020 Apr;23(5):182-190.
    PMID: 31910663 DOI: 10.1080/10255842.2019.1709828
    Glenoid perforation is not the intended consequence of the surgery and must be avoided. The analysis on biomechanical aspect of glenoid vault perforation remains unknown. The purpose of this study is to determine the impact of glenoid perforation towards stress distribution and micromotion at the interfaces. Eight glenoid implant models had been constructed with various size, number and type of fixation. A load of 750 N was applied to centre, superior-anterior and superior-posterior area. Implant perforation had minimal impact on stress distribution and micromotion at the interfaces. However, cement survival rate for implant without perforation was the highest with a difference of up to 37% compared to other perforated models. Besides that, implant fixation and high stresses at the implant had more of an impact on implant instability than implant perforation. As a conclusion, glenoid perforation did not influence the stress distribution and micromotion, but, it reduced cement survival rate and increase the stress critical volume.
  5. Syahrom A, Abdul Kadir MR, Harun MN, Öchsner A
    Med Eng Phys, 2015 Jan;37(1):77-86.
    PMID: 25523865 DOI: 10.1016/j.medengphy.2014.11.001
    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones.
  6. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Eng Phys, 2013 Jun;35(6):792-9.
    PMID: 22959618 DOI: 10.1016/j.medengphy.2012.08.011
    In the development of artificial cancellous bones, two major factors need to be considered: the integrity of the overall structure and its permeability. Whilst there have been many studies analysing the mechanical properties of artificial and natural cancellous bones, permeability studies, especially those using numerical simulation, are scarce. In this study, idealised cancellous bones were simulated from the morphological indices of natural cancellous bone. Three different orientations were also simulated to compare the anisotropic nature of the structure. Computational fluid dynamics methods were used to analyse fluid flow through the cancellous structures. A constant mass flow rate was used to determine the intrinsic permeability of the virtual specimens. The results showed similar permeability of the prismatic plate-and-rod model to the natural cancellous bone. The tetrakaidecahedral rod model had the highest permeability under simulated blood flow conditions, but the plate counterpart had the lowest. Analyses on the anisotropy of the virtual specimens showed the highest permeability for the horizontal orientation. Linear relationships were found between permeability and the two physical properties, porosity and bone surface area.
  7. Hussain F, Abdul Kadir MR, Zulkifly AH, Sa'at A, Aziz AA, Hossain G, et al.
    Biomed Res Int, 2013;2013:175056.
    PMID: 24294597 DOI: 10.1155/2013/175056
    The distal femurs of 100 subjects (50 men, 50 women) from the Malay population aged between 19 and 38 years were scanned to measure the anterior-posterior (AP) and medial-lateral (ML) width. The mean AP values were 64.02 ± 3.38 mm and 57.33 ± 3.26 mm for men and women, respectively, and the mean ML values were 74.91 ± 3.52 mm and 64.53 ± 3.07 mm. We compared our data to that published previously for the Chinese and Indian populations. It was found that the Malay population had smaller distal femur than that of the Chinese but was larger than that of the Indian population (P < 0.05). In conclusion, although it is well established that Asians have a smaller distal femur size than that of the Western population, the variations in different Asian ethnicities may need to be considered when designing the appropriate knee implant.
  8. Fatihhi SJ, Rabiatul AA, Harun MN, Kadir MR, Kamarul T, Syahrom A
    J Mech Behav Biomed Mater, 2016 Feb;54:21-32.
    PMID: 26410762 DOI: 10.1016/j.jmbbm.2015.09.006
    The present study reports the effects of combined torsional and compressive cyclic loading on trabecular bone in order to mimic true physiological conditions and thereby provides improved data that represents clinical and real life conditions. However, only compressive behaviour is evaluated in most previous studies of bone mechanics. From the monotonic evaluation, it is observed that lower stress is needed for the onset of microcrack in the sample under torsional loading, compared to the stress needed in compression. Trabecular bone samples were subjected to a combination of torsion and compression fatigue at different stress levels during which they were compared to compressive axial fatigue. The stress levels were determined by considering the monotonic strength at 25-50% for both compressive and shear stresses. Significant decrease in fatigue lifetime is observed in between samples of pure compression fatigue and those with superpositioned torsional loading (p<0.05). The reduction in fatigue lifetime became more evident at a high torsional stress level. In this case, the failure of the sample is said to be 'torsional dominant'. Fatigue behaviour of bovine trabecular bone begins with plastic deformation, followed by strain accumulation and modulus reduction. As the strain rate increases, more energy dissipates and the sample finally failed. Further, the analysis of fractograph revealed something on the trabeculae by bending in sample with superpositioned torsional loading. In conclusion, torsional loading decreases the quality of the trabecular properties in terms of stiffness, life and structural integrity. It is hoped that results from this study will improve the understanding of the behaviour of trabecular bone under combined fatigue and help to develop future assessments of trabecular failure.
  9. Wahab AH, Kadir MR, Harun MN, Kamarul T, Syahrom A
    Med Biol Eng Comput, 2017 Mar;55(3):439-447.
    PMID: 27255451 DOI: 10.1007/s11517-016-1525-6
    The present study was conducted to compare the stability of four commercially available implants by investigating the focal stress distributions and relative micromotion using finite element analysis. Variations in the numbers of pegs between the implant designs were tested. A load of 750 N was applied at three different glenoid positions (SA: superior-anterior; SP: superior-posterior; C: central) to mimic off-center and central loadings during activities of daily living. Focal stress distributions and relative micromotion were measured using Marc Mentat software. The results demonstrated that by increasing the number of pegs from two to five, the total focal stress volumes exceeding 5 MPa, reflecting the stress critical volume (SCV) as the threshold for occurrence of cement microfractures, decreased from 8.41 to 5.21 % in the SA position and from 9.59 to 6.69 % in the SP position. However, in the C position, this change in peg number increased the SCV from 1.37 to 5.86 %. Meanwhile, micromotion appeared to remain within 19-25 µm irrespective of the number of pegs used. In conclusion, four-peg glenoid implants provide the best configuration because they had lower SCV values compared with lesser-peg implants, preserved more bone stock, and reduced PMMA cement usage compared with five-peg implants.
  10. Fatihhi SJ, Harun MN, Abdul Kadir MR, Abdullah J, Kamarul T, Öchsner A, et al.
    Ann Biomed Eng, 2015 Oct;43(10):2487-502.
    PMID: 25828397 DOI: 10.1007/s10439-015-1305-8
    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p 
  11. Md Saad AP, Prakoso AT, Sulong MA, Basri H, Wahjuningrum DA, Syahrom A
    Biomech Model Mechanobiol, 2019 Jun;18(3):797-811.
    PMID: 30607641 DOI: 10.1007/s10237-018-01115-z
    This study employs a computational approach to analyse the impact of morphological changes on the structural properties of biodegradable porous Mg subjected to a dynamic immersion test for its application as a bone scaffold. Porous Mg was immersed in a dynamic immersion test for 24, 48, and 72 h. Twelve specimens were prepared and scanned using micro-CT and then reconstructed into a 3D model for finite element analysis. The structural properties from the numerical simulation were then compared to the experimental values. Correlations between morphological parameters, structural properties, and fracture type were then made. The relative losses were observed to be in agreement with relative mass loss done experimentally. The degradation rates determined using exact (degraded) surface area at particular immersion times were on average 20% higher than the degradation rates obtained using original surface area. The dynamic degradation has significantly impacted the morphological changes of porous Mg in volume fraction, surface area, and trabecular separation, which in turn affects its structural properties and increases the immersion time.
  12. Hikmawati D, Maulida HN, Putra AP, Budiatin AS, Syahrom A
    Int J Biomater, 2019;2019:7179243.
    PMID: 31341479 DOI: 10.1155/2019/7179243
    The most effective treatment for spinal tuberculosis was by eliminating the tuberculosis bacteria and replacing the infected bone with the bone graft to induce the healing process. This study aims to synthesize and characterize nanohydroxyapatite-gelatin-based injectable bone substitute (IBS) with addition of streptomycin. The IBS was synthesized by mixing nanohydroxyapatite and 20 w/v% gelatin with ratio of 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, and 75:25 ratio and streptomycin addition as antibiotic agent. The mixture was added by hydroxypropyl methylcellulose as suspending agent. FTIR test showed that there was a chemical reaction occurring in the mixture, between the gelatin and streptomycin. The result of injectability test showed that the highest injectability of the IBS sample was 98.64% with the setting time between 30 minutes and four hours after injection on the HA scaffold that represents the bone cavity and coat the pore scaffold. The cytotoxicity test result showed that the IBS samples were nontoxic towards BHK-21 fibroblast cells and human hepatocyte cells since the viability cell was more than 50% with significant difference (p-value<0.05). The acidity of the IBS was stable and it was sensitive towards Staphylococcus aureus with significantly difference (p-value<0.05). The streptomycin release test showed that the streptomycin could be released from the IBS-injected bone scaffold with release of 2.5% after 4 hours. All the results mentioned showed that IBS was suitable as a candidate to be used in spinal tuberculosis case.
  13. Jamari J, Ammarullah MI, Saad APM, Syahrom A, Uddin M, van der Heide E, et al.
    J Funct Biomater, 2021 Jun 06;12(2).
    PMID: 34204138 DOI: 10.3390/jfb12020038
    Wear and wear-induced debris is a significant factor in causing failure in implants. Reducing contact pressure by using a textured surface between the femoral head and acetabular cup is crucial to improving the implant's life. This study presented the effect of surface texturing as dimples on the wear evolution of total hip arthroplasty. It was implemented by developing finite element analysis from the prediction model without dimples and with bottom profile dimples of flat, drill, and ball types. Simulations were carried out by performing 3D physiological loading of the hip joint under normal walking conditions. A geometry update was initiated based on the patient's daily routine activities. Our results showed that the addition of dimples reduced contact pressure and wear. The bottom profile dimples of the ball type had the best ability to reduce wear relative to the other types, reducing cumulative linear wear by 24.3% and cumulative volumetric wear by 31% compared to no dimples. The findings demonstrated that surface texturing with appropriate dimple bottom geometry on a bearing surface is able to extend the lifetime of hip implants.
  14. Astuti SD, Puspita PS, Putra AP, Zaidan AH, Fahmi MZ, Syahrom A, et al.
    Lasers Med Sci, 2019 Jul;34(5):929-937.
    PMID: 30413898 DOI: 10.1007/s10103-018-2677-4
    Candida albicans is a normal flora caused fungal infections and has the ability to form biofilms. The aim of this study was to improve the antifungal effect of silver nanoparticles (AgNPs) and the light source for reducing the biofilm survival of C. albicans. AgNPs were prepared by silver nitrate (AgNO3) and trisodium citrate (Na3C6H5O7). To determine the antifungal effect of treatments on C. albicans biofilm, samples were distributed into four groups; L + P+ was treatment with laser irradiation and AgNPs; L + P- was treatment with laser irradiation only; L - P+ was treatment with AgNPs only (control positive); L - P- was no treatment with laser irradiation or AgNPs (control negative). The growth of fungi had been monitored by measuring the optical density at 405 nm with ELISA reader. The particle size of AgNPs was measured by using (particle size analyzer) and the zeta potential of AgNPs was measured by using Malvern zetasizer. The PSA test showed that the particle size of AgNPs was distributed between 7.531-5559.644 nm. The zeta potentials were found lower than - 30 mV with pH of 7, 9 or 11. The reduction percentage was analyzed by ANOVA test. The highest reduction difference was given at a lower level irradiation because irradiation with a density energy of 6.13 ± 0.002 J/cm2 resulted in the biofilm reduction of 7.07 ± 0.23% for the sample without AgNPs compared to the sample with AgNPs that increased the biofilm reduction of 64.48 ± 0.07%. The irradiation with a 450-nm light source had a significant fungicidal effect on C. albicans biofilm. The combination of light source and AgNPs provides an increase of biofilm reduction compared to the light source itself.
  15. Suhariningsih S, Glory S, Khaleyla F, Kusumawati HN, Septriana M, Susilo Y, et al.
    Vet Med Int, 2022;2022:7922892.
    PMID: 36465856 DOI: 10.1155/2022/7922892
    Diabetes mellitus (DM) is a chronic metabolic disease or disorder characterized by high blood sugar levels as well as impaired carbohydrate, lipid, and protein metabolism due to insulin function insufficiency. Insulin deficiency can be caused by impaired or deficient insulin production by Langerhans beta cells in the pancreas or by a lack of responsiveness of the body's cells to insulin. This study aims to the effects of electrostimulation on the ameliorative (improves disease manifestations) or renoprotective (protects the kidneys) in a diabetic rat model using noninvasive (electrical stimulation with the magnetic and nonmagnetic electrode) and invasive (using needles) methods. This study used 25 female rats, with a normal control group (KN), a diabetes control group (KD), a needle treatment group (A), an electro-stimulator treatment group with a magnetic electrode (M), and an ES group with a nonmagnetic electrode (ES) (L). The electro-stimulator used AES-05 with a magnetic field strength of 90 mT at two acupoints, Pishu (BL20) and Shenshu (BL23). The treatment was administered 12 times in one month with a therapy time of 6.6 minutes per session. Body weight and blood sugar levels were compared before and after the treatment. After treatment, the diameter of the islets of Langerhans, as well as levels of creatinine and blood urea nitrogen (BUN), was measured. Furthermore, statistical analysis was performed (α = 0.05). The results of this study showed that electrical stimulation treatments with needle-invasive, noninvasive magnetic electrodes, and nonmagnetic electrodes significantly reduced diabetic rats' blood glucose levels before and after the treatment. The analysis of the diameter of the islets of Langerhans revealed a significant difference between the treatment groups. The analysis of creatinine levels revealed a significant difference between groups, but creatinine levels in the group with the magnetic electrode (0.58 ± 0.17 mg/dL) were not significantly different from the control group (0.58 ± 0.07 mg/dL). The BUN test results revealed a significant difference compared with the diabetic control group, but no significant difference with the magnetic electrode treatment group. Conclusion. Based on the results, the most effective therapy for diabetes is a noninvasive method with magnetic (M) electrodes.
  16. Astuti SD, Isyrofie AIFA, Nashichah R, Kashif M, Mujiwati T, Susilo Y, et al.
    J Med Signals Sens, 2022;12(4):306-316.
    PMID: 36726418 DOI: 10.4103/jmss.jmss_139_21
    BACKGROUND: Fish is a food ingredient that is consumed throughout the world. When fishes die, their freshness begins to decrease. The freshness of the fish can be determined by the aroma it produces. The purpose of this study is to monitor the odor of fish using a collection of gas sensors that can detect distinct odors.

    METHODS: The sensor was tested with three kinds of samples, namely Pseudomonas aeruginosa, tuna, and tuna that was contaminated with P. aeruginosa bacteria. During the process of collecting sensor data, all samples were placed in a vacuum so that the gas or aroma produced was not contaminated with other aromas. Eight sensors were used which were designed and implemented in an electronic nose (E-nose) device that can withstand aroma. The data collection process was carried out for 48 h, with an interval of 6 h for each data collection. Data processing was performed by using the principal component analysis and support vector machine (SVM) methods to obtain a plot score visualization and classification and to determine the aroma pattern of the fish.

    RESULTS: The results of this study indicate that the E-nose system is able to smell fish based on the hour with 95% of the cumulative variance of the main component in the classification test between fresh tuna and tuna fish contaminated with P. aeruginosa.

    CONCLUSION: The SVM classifier was able to classify the healthy and unhealthy fish with an accuracy of 99%. The sensors that provided the highest response are the TGS 825 and TGS 826 sensors.

  17. Astuti SD, Pertiwi WI, Wahyuningsih SPA, Permatasari PAD, Nurdin DZI, Syahrom A
    Vet World, 2023 May;16(5):1176-1184.
    PMID: 37576764 DOI: 10.14202/vetworld.2023.1176-1184
    BACKGROUND AND AIM: According to 2013 data from the Ministry of Health of the Republic of Indonesia, there were 8.2% more wounds than typical in Indonesia; 25.4% were open wounds, 70.9% were abrasions and bruises, and 23.2% were lacerations. A wound is defined as damage or loss of body tissue. This study aimed to determine the effectiveness of wound healing using red-laser therapy (650 nm, 3.5 J/cm2), blue-laser therapy (405 nm, 3.5 J/cm2), ozone therapy, red-laser therapy (650 nm, 3.5 J/cm2) with ozone, and blue-laser therapy (405 nm, 3.5 J/cm2) with ozone.

    MATERIALS AND METHODS: One hundred and twelve mice were given incision wounds and infected with methicillin-resistant Staphylococcus aureus (MRSA). The study used a factorial design with two factors: The type of therapy (n = 7) and irradiation time (days 1, 2, 4, and 6). The mice were divided into seven therapy groups: Control group with NaCl, control with Sofra-tulle® treatment, red-laser therapy (650 nm, 3.5 J/cm2), blue-laser therapy (405 nm, 3.5 J/cm2), ozone therapy, red-laser therapy (650 nm, 3.5 J/cm2) with ozone, and blue-laser therapy (405 nm, 3.5 J/cm2) with ozone. This therapy was performed using irradiation perpendicular to the wound area. The photosensitizer used was curcumin 10 mg/mL, which was applied to the wound area before exposure to a laser and ozone. The ozone concentration was 0.011 mg/L with a flow time of 80 s. The test parameters were the number of collagens, bacterial colonies, lymphocytes, monocytes, and wound length measurement to determine their acceleration effects on wound healing. Data were analyzed by a two-way (factorial) analysis of variance test.

    RESULTS: Acceleration of wound healing was significantly different between treatments with a laser or a laser-ozone combination and treatment using 95% sodium chloride (NaCl) and Sofra-tulle®. On day 6, the blue-laser with ozone treatment group had efficiently increased the number of bacteria and reduced the wound length, and the red-laser treatment with ozone increased the amount of collagen. In addition, the red-laser also reduced the number of lymphocytes and monocytes, which can have an impact on accelerating wound healing. Blue-laser therapy was very effective for increasing the number of epithelia.

    CONCLUSION: The blue- and red-laser combined with ozone treatments effectively accelerated the healing of incisional wounds infected with MRSA bacteria.

  18. Yaqubi AK, Astuti SD, Zaidan AH, Syahrom A, Nurdin DZI
    Lasers Med Sci, 2024 Jan 26;39(1):47.
    PMID: 38277009 DOI: 10.1007/s10103-024-03991-7
    Living organisms, particularly humans, frequently encounter microorganisms such as bacteria, fungi, and viruses in their surroundings. Silver nanoparticles are widely used in biomedical devices because of their antibacterial and antiviral properties. The study evaluates the efficacy of red laser and silver nanoparticles from grape seed extract (AgNPs-GSE) in reducing Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, which cause infections. The sample comprised three groups: a control group without laser irradiation (T0), Escherichia coli samples (A1 and A2) irradiated with a 405-nm diode laser at different times and concentrations of silver nanoparticles, and Staphylococcus aureus samples (A3 and A4) illuminated with a 405-nm diode laser at different times and concentrations. Bacteria in groups A2 and A4 were treated with a photosensitizer (PS) made from grape seed extracts, incubated for 10 min, and then irradiated for 90, 120, 150, and 180 s. The samples were cultured on TSA media, set at 37 °C, counted using a Quebec colony counter, and analyzed using ANOVA and Tukey tests with a significance level of p 
  19. Astuti SD, Febriastri AR, Mukti AT, Yaqubi AK, Susilo Y, Syahrom A
    Heliyon, 2023 Dec;9(12):e23253.
    PMID: 38149202 DOI: 10.1016/j.heliyon.2023.e23253
    The purpose of this study is to determine how photo biomodulation therapy utilizing infrared diode laser irradiation (975.2 nm) affects the gonadal maturity level (GML) of male Siamese catfish (Pan-gasianodon hypothalamus). The interest in applying laser therapy in medicine and dentistry has remarkably increased in the last decade. Different types of lasers are available, and their usage is well-defined by different parameters, such as wavelength, energy density, power output, duration of radiation, power density and radiation mode. Infrared diode laser irradiation is used at the reproductive point (governor's vessel), situated 2/3 of the way between the anus and the pectoral fin. This study examined the metrics GML, gonads somatic index, and hepatosomatic index. The treatments were Control+ (ovaprim), Control- (without the treatment), P1 (0.2 J/cm2), P2 (0.4 J/cm2), P3 (0.6 J/cm2), and P4 (0.8 J/cm2). Therapy with infrared diode laser irradiation can modify gonad maturity (GML), gonadosomal index, and hepatosomatic index in male Siamese catfish. The photobiomodulation effect of an infrared laser stimulated the gonadal maturation of Siamese catfish. This is based on the values of wavelength (nm), power (mW), beam area (cm2), time (s), radiation mode (rad) and energy dose (J/cm2) in Control- (no treatment), control+ (ovaprim), P1, P2, P3, and P4. The increase in the observed parameter values is due to the vitellogenesis process. The fish gonads at the GML IV had the highest GML at P2 (dose 0.4 J/cm2), with a GSI value of 1.02% and an HSI value of 1.46%. According to the study's findings, photo biomodulation therapy with infrared diode laser exposure at a dose of 0.4 J/cm2 is the best way to increase the gonad maturity of male Siamese catfish.
  20. Yang Harmony TC, Yusof N, Ramalingam S, Baharin R, Syahrom A, Mansor A
    Clin Orthop Relat Res, 2022 Feb 01;480(2):407-418.
    PMID: 34491235 DOI: 10.1097/CORR.0000000000001968
    BACKGROUND: Gamma irradiation, which minimizes the risk of infectious disease transmission when human bone allograft is used, has been found to negatively affect its biomechanical properties. However, in those studies, the deep-freezing temperature during irradiation was not necessarily maintained during transportation and sterilization, which may have affected the findings. Prior reports have also suggested that controlled deep freezing may mitigate the detrimental effects of irradiation on the mechanical properties of bone allograft.

    QUESTION/PURPOSE: Does a controlled deep-freezing temperature during irradiation help preserve the compressive mechanical properties of human femoral cortical bone allografts?

    METHODS: Cortical bone cube samples, each measuring 64 mm3, were cut from the mid-diaphyseal midshaft of five fresh-frozen cadaver femurs (four male donors, mean [range] age at procurement 42 years [42 to 43]) and were allocated via block randomization into one of three experimental groups (with equal numbers of samples from each donor allocated into each group). Each experimental group consisted of 20 bone cube samples. Samples irradiated in dry ice were subjected to irradiation doses ranging from 26.7 kGy to 27.1 kGy (mean 26.9 kGy) at a deep-freezing temperature below -40°C (the recommended long-term storage temperature for allografts). Samples irradiated in gel ice underwent irradiation doses ranging from 26.2 kGy and 26.4 kGy (mean 26.3 kGy) in a freezing temperature range between -40°C and 0°C. Acting as controls, samples in a third group were not subjected to gamma irradiation. The mechanical properties (0.2% offset yield stress, ultimate compression stress, toughness, and the Young modulus) of samples from each group were subsequently evaluated via axial compression loading to failure along the long axis of the bone. The investigators were blinded to sample group during compression testing.

    RESULTS: The mean ultimate compression stress (84 ± 27 MPa versus 119 ± 31 MPa, mean difference 35 [95% CI 9 to 60]; p = 0.005) and toughness (3622 ± 1720 kJ/m3 versus 5854 ± 2900 kJ/m3, mean difference 2232 [95% CI 70 to 4394]; p = 0.009) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than in those irradiated at deep-freezing temperatures (below -40°C). The mean 0.2% offset yield stress (73 ± 28 MPa versus 109 ± 38 MPa, mean difference 36 [95% CI 11 to 60]; p = 0.002) and ultimate compression stress (84 ± 27 MPa versus 128 ± 40 MPa, mean difference 44 [95% CI 17 to 69]; p < 0.001) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than the nonirradiated control group samples. The mean 0.2% offset yield stress (73 ± 28 MPa versus 101 ± 28 MPa, mean difference 28 [95% CI 3 to 52]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to those irradiated at deep-freezing temperature. The mean toughness (3622 ± 1720 kJ/m3 versus 6231 ± 3410 kJ/m3, mean difference 2609 [95% CI 447 to 4771]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to the non-irradiated control group samples. The mean 0.2% offset yield stress, ultimate compression stress, and toughness of samples irradiated in deep-freezing temperatures (below -40°C) were not different with the numbers available to the non-irradiated control group samples. The Young modulus was not different with the numbers available among the three groups.

    CONCLUSION: In this study, maintenance of a deep-freezing temperature below -40°C, using dry ice as a cooling agent, consistently mitigated the adverse effects of irradiation on the monotonic-compression mechanical properties of human cortical bone tissue. Preserving the mechanical properties of a cortical allograft, when irradiated in a deep-freezing temperature, may have resulted from attenuation of the deleterious, indirect effects of gamma radiation on its collagen architecture in a frozen state. Immobilization of water molecules in this state prevents radiolysis and the subsequent generation of free radicals. This hypothesis was supported by an apparent loss of the protective effect when a range of higher freezing temperatures was used during irradiation.

    CLINICAL RELEVANCE: Deep-freezing temperatures below -40°C during gamma irradiation may be a promising approach to better retain the native mechanical properties of cortical bone allografts. A further study of the effect of deep-freezing during gamma radiation sterilization on sterility and other important biomechanical properties of cortical bone (such as, tensile strength, fracture toughness, and fatigue) is needed to confirm these findings.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links