Displaying all 20 publications

Abstract:
Sort:
  1. Samiei A, Liang JB, Ghorbani GR, Hirooka H, Yaakub H, Tabatabaei M
    Pol J Vet Sci, 2010;13(2):349-56.
    PMID: 20731192
    The first objective of this study was to investigate the relationship between concentrations of beta-hydroxybutyrate (BHBA) in milk and blood to assess the reliability of the BHBA concentrations in milk measured by a semi quantitative keto-test paper to detect subclinical ketosis (SCK) in 50 fresh high-producing Iranian Holstein cows in Golestan Province, Iran. The second objective was the effects of SCK on milk yield and components. Concentrations of nonesterified fatty acids (NEFA) and BHBA were analyzed quantitatively in blood plasma and commercial keto-test paper was used for semi quantitative determination of BHBA concentration in milk. Milk yield was measured until 60 d after calving but milk compositions were measured until 30 d after calving. The mean plasma BHBA, milk BHBA, plasma NEFA, milk yield, milk fat percentage and milk fat: protein ratio were 1,234 micromol/L, 145 micromol/L, 0.482 mEq/L, 29.5 kg, 3.9% and 1.4, respectively. Fifty eight percent of the cows had SCK during the first month of lactation. High correlation coefficients were observed between blood BHBA and blood NEFA, and between blood and milk BHBA. The milk yield of cattle with SCK decreased (P < 0.01) but the fat percentage and milk fat: protein ratio increased (P < 0.01). The commercial keto-test paper used had a low false positive result at a cut-off point of 200 fmol of BHBA/L of milk. The results showed that the best time to assess SCK using the commercial keto-test paper was d 10, 14 and 17 after calving.
  2. Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H, Dadak A
    Waste Manag, 2019 Mar 15;87:485-498.
    PMID: 31109549 DOI: 10.1016/j.wasman.2019.02.029
    A comprehensive exergoeconomic performance analysis of a municipal solid waste digestion plant integrated with a biogas genset was conducted throughout this study in order to highlight its bottlenecks for further improvements. Exergoeconomic performance parameters of each component of the plant were determined by solving exergy and cost balance equations based on Specific Exergy Costing (SPECO) approach. The analysis was conducted to reveal the cost structure of the plant based on actual operating information and economic data. The exergy unitary cost of two main products of the plant, i.e., bioelectricity and biofertilizer were determined at 26.27 and 2.27 USD/GJ, respectively. The genset showed the highest overall cost rate (101.27 USD/h) followed by digester (68.41 USD/h). Furthermore, the net bioelectricity amounted to 67.81% of the overall cost rate of the products, while this value was 32.19% for both liquid and dewatered digestates. According to the results obtained, efforts should mainly focus on enhancing the efficiency of the genset in order to boost the overall performance of the system exergoeconomically. In addition, minimizing the investment-related cost of the digester could also substantially enhance the exergoeconomic performance of the plant.
  3. Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M, Sulaiman A, Ghassemi A
    Methods Mol Biol, 2020;1980:121-151.
    PMID: 30838603 DOI: 10.1007/7651_2018_204
    Life-cycle assessment (LCA) is one of the most attractive tools employed nowadays by environmental policy-makers as well as business decision-makers to ensure environmentally sustainable production/consumption of various goods/services. LCA is a systematic, rigorous, and standardized approach aimed at quantifying resources consumed/depleted, pollutants released, and the related environmental and health impacts through the course of consumption and production of goods/service. Algal fuels are no exception and their environmental sustainability could be well scrutinized using the LCA methodology. In line with that, this chapter is devoted to present guidelines on the technical aspects of LCA application in algal fuels while elaborating on major standards used, i.e., ISO 14040 and 14044 standards. Overall, LCA practitioners as well as technical experts dealing with algal fuels in both the public and private sectors could be the main target audience for these guidelines.
  4. Shojaei TR, Tabatabaei M, Shawky S, Salleh MA, Bald D
    Mol Biol Rep, 2015 Jan;42(1):187-99.
    PMID: 25245956 DOI: 10.1007/s11033-014-3758-5
    Biotechnology-based detection systems and sensors are in use for a wide range of applications in biomedicine, including the diagnostics of viral pathogens. In this review, emerging detection systems and their applicability for diagnostics of viruses, exemplified by the case of avian influenza virus, are discussed. In particular, nano-diagnostic assays presently under development or available as prototype and their potentials for sensitive and rapid virus detection are highlighted.
  5. Shojaei TR, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, et al.
    Braz J Infect Dis, 2014 Nov-Dec;18(6):600-8.
    PMID: 25181404 DOI: 10.1016/j.bjid.2014.05.015
    Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.
  6. Karami R, Mohsenifar A, Mesbah Namini SM, Kamelipour N, Rahmani-Cherati T, Roodbar Shojaei T, et al.
    PMID: 26503886
    Organophosphorus (OP) compounds are one of the most hazardous chemicals used as insecticides/pesticide in agricultural practices. A large variety of OP compounds are hydrolyzed by organophosphorus hydrolases (OPH; EC 3.1.8.1). Therefore, OPHs are among the most suitable candidates which could be used in designing enzyme-based sensors for detecting OP compounds. In the present work, a novel nanobiosensor for the detection of paraoxon was designed and fabricated. More specifically, OPH was covalently embedded onto chitosan and the enzyme-chitosan bioconjugate was then immobilized on negatively charged gold nanoparticles (AuNPs) electrostatically. The enzyme was immobilized on AuNPs without chitosan as well to compare the two systems in terms of detection limit and enzyme stability under different pH and temperature conditions. Coumarin 1, a competitive inhibitor of the enzyme, was used as a fluorogenic probe. The emission of coumarin 1 was effectively quenched by the immobilized Au-NPs when bound to the developed nanobioconjugates. However, in the presence of paraoxon, coumarin 1 left the nanobioconjugate leading to enhanced fluorescence intensity. Moreover, compared to the immobilized enzyme without chitosan, the chitosan-immobilized enzyme was found to possess decreased Km value by over 50%, increased Vmax and Kcat values by around 15% and 74%, respectively. Higher stability within a wider range of pH (2-12) and temperature (25-90°C) was also achieved. The method worked in the 0 to 1050 nM concentration ranges, and had a detection limit as low as 5 × 10(-11) M.
  7. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei M
    Biomed Res Int, 2015;2015:597198.
    PMID: 26146623 DOI: 10.1155/2015/597198
    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.
  8. Shojaei TR, Salleh MA, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, et al.
    PMID: 27380305 DOI: 10.1016/j.saa.2016.06.052
    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13μgmL(-1) and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.
  9. Dehhaghi M, Tabatabaei M, Aghbashlo M, Kazemi Shariat Panahi H, Nizami AS
    J Environ Manage, 2019 Dec 01;251:109597.
    PMID: 31563049 DOI: 10.1016/j.jenvman.2019.109597
    Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.
  10. Al-Mamun A, Jafary T, Baawain MS, Rahman S, Choudhury MR, Tabatabaei M, et al.
    Environ Res, 2020 04;183:109273.
    PMID: 32105886 DOI: 10.1016/j.envres.2020.109273
    Developing cost-effective technology for treatment of sewage and nitrogen-containing groundwater is one of the crucial challenges of global water industries. Microbial fuel cells (MFCs) oxidize organics from sewage by exoelectrogens on anode to produce electricity while denitrifiers on cathode utilize the generated electricity to reduce nitrogen from contaminated groundwater. As the exoelectrogens are incapable of oxidizing insoluble, polymeric, and complex organics, a novel integration of an anaerobic sequencing batch reactor (ASBR) prior to the MFC simultaneously achieve hydrolytic-acidogenic conversion of complex organics, boost power recovery, and remove Carbon/Nitrogen (C/N) from the sewage and groundwater. The results obtained revealed increases in the fractions of soluble organics and volatile fatty acids in pretreated sewage by 52 ± 19% and 120 ± 40%, respectively. The optimum power and current generation with the pretreated sewage were 7.1 W m-3 and 45.88 A m-3, respectively, corresponding to 8% and 10% improvements compared to untreated sewage. Moreover, the integration of the ASBR with the biocathode MFC led to 217% higher carbon and 136% higher nitrogen removal efficiencies compared to the similar system without ASBR. The outcomes of the present study represent the promising prospects of using ASBR pretreatment and successive utilization of solubilized organics in denitrifying biocathode MFCs for simultaneous energy recovery and C/N removal from both sewage and nitrate nitrogen-contaminated groundwater.
  11. Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M, Khanali M, Khalife E, Roodbar Shojaei T, et al.
    Data Brief, 2020 Jun;30:105428.
    PMID: 32322611 DOI: 10.1016/j.dib.2020.105428
    Integrated environmental analysis using life cycle assessment for different fuel blends used in a single-cylinder diesel engine was performed to select the most eco-friendly fuel blend. More specifically, the inventory data in support of the integrated environmental analysis of water-emulsified 5% biodiesel/diesel blends (B5) containing different levels of carbon nanoparticles (i.e., 38, 75, and 150 µM) as a novel fuel nanoadditives at a fixed engine speed of 1000 rpm and four different engine loads (i.e., 25, 50, 75, and 100%) are presented. Neat diesel, B5, and B5 containing water (3 wt.%) were used as controls. Raw data related to the production and combustion of fuel blends were experimentally collected. Industrial (i.e., experiments at large scale) and laboratory (i.e., experiments at small scale) data were used for fuel blends production while experimental data obtained by engine tests were used for the combustion stage. Then raw data were processed with the IMPACT 2002+ methods by using the SimaPro software and EcoInvent database and were then converted into environmental impacts. Accordingly, six supplementary files including the inventory data on integrated environmental analysis of the different fuel blends are presented (Supplementary Files 1-6). The data could be applied for integrated environmental analysis in order to avoid subjective weighting of combustion parameters for selecting the most eco-friendly fuel blend for use in diesel engines. More specifically, by developing a single score indicator obtained through conducting integrated combustion analysis, comparison of various fuel blends is largely facilitated.
  12. Kabirnataj S, Nematzadeh GA, Talebi AF, Saraf A, Suradkar A, Tabatabaei M, et al.
    Int J Syst Evol Microbiol, 2020 May;70(5):3413-3426.
    PMID: 32375955 DOI: 10.1099/ijsem.0.004188
    Five cyanobacterial strains with Nostoc-like morphology from different localities of the Mazandaran province of Iran were characterized using a polyphasic approach. Three strains clustered within the Aliinostoc clade whereas one each of the remaining two strains clustered within the genera Desmonostoc and Desikacharya. The phylogenetic positioning of all the strains by the bayesian inference, neighbour joining and maximum parsimony methods inferred using 16S rRNA gene indicated them to represent novel species of the genera Aliinostoc, Desmonostoc and Desikacharya. The 16S-23S ITS secondary structure analysis revealed that all five strains under study represented novel species unknown to science. In accordance with the International Code of Nomenclature for algae, fungi and plants we describe three novel species of the genus Aliinostoc and one species each of the genera Desmonostoc and Desikacharya.
  13. Khounani Z, Hosseinzadeh-Bandbafha H, Nazemi F, Shaeifi M, Karimi K, Tabatabaei M, et al.
    J Environ Manage, 2021 Feb 01;279:111822.
    PMID: 33348185 DOI: 10.1016/j.jenvman.2020.111822
    The huge amount of agro-wastes generated due to expanding agricultural activities can potentially cause serious environmental and human health problems. Using the biorefinery concept, all parts of agricultural plants can be converted into multiple value-added bioproducts while reducing waste generation. This approach can be viewed as an effective strategy in developing and realizing a circular bioeconomy by accomplishing the dual goals of waste mitigation and energy recovery. However, the sustainability issue of biorefineries should still be thoroughly scrutinized using comprehensive resource accounting methods such as exergy-based approaches. In light of that, this study aims to conduct a detailed exergy analysis of whole-crop safflower biorefinery consisting of six units, i.e., straw handling, biomass pretreatment, bioethanol production, wastewater treatment, oil extraction, and biodiesel production. The analysis is carried out to find the major exergy sink in the developed biorefinery and discover the bottlenecks for further performance improvements. Overall, the wastewater treatment unit exhibits to be the major exergy sink, amounting to over 70% of the total thermodynamic irreversibility of the process. The biomass pretreatment and bioethanol production units account for 12.4 and 10.3% of the total thermodynamic inefficiencies of the process, respectively. The exergy rates associated with bioethanol, biodiesel, lignin, biogas, liquid digestate, seed cake, sodium sulfate, and glycerol are determined to be 5918.5, 16516.8, 10778.9, 1741.4, 6271.5, 15755.8, 3.4, and 823.5 kW, respectively. The overall exergetic efficiency of the system stands at 72.7%, demonstrating the adequacy of the developed biorefinery from the thermodynamic perspective.
  14. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
  15. Anwar MN, Fayyaz A, Sohail NF, Khokhar MF, Baqar M, Yasar A, et al.
    J Environ Manage, 2020 Apr 15;260:110059.
    PMID: 32090808 DOI: 10.1016/j.jenvman.2019.110059
    This study critically reviews the recent developments and future opportunities pertinent to the conversion of CO2 as a potent greenhouse gas (GHG) to fuels and valuable products. CO2 emissions have reached an alarming level of around 410 ppm and have become the primary driver of global warming and climate change leading to devastating events such as droughts, hurricanes, torrential rains, floods, tornados and wildfires across the world. These events are responsible for thousands of deaths and have adversely affected the economic development of many countries, loss of billions of dollars, across the globe. One of the promising choices to tackle this issue is carbon sequestration by pre- and post-combustion processes and oxyfuel combustion. The captured CO2 can be converted into fuels and valuable products, including methanol, dimethyl ether (DME), and methane (CH4). The efficient use of the sequestered CO2 for the desalinization might be critical in overcoming water scarcity and energy issues in developing countries. Using the sequestered CO2 to produce algae in combination with wastewater, and producing biofuels is among the promising strategies. Many methods, like direct combustion, fermentation, transesterification, pyrolysis, anaerobic digestion (AD), and gasification, can be used for the conversion of algae into biofuel. Direct air capturing (DAC) is another productive technique for absorbing CO2 from the atmosphere and converting it into various useful energy resources like CH4. These methods can effectively tackle the issues of climate change, water security, and energy crises. However, future research is required to make these conversion methods cost-effective and commercially applicable.
  16. Khounani Z, Hosseinzadeh-Bandbafha H, Nizami AS, Sulaiman A, Goli SAH, Tavassoli-Kafrani E, et al.
    Data Brief, 2020 Feb;28:104933.
    PMID: 31886362 DOI: 10.1016/j.dib.2019.104933
    In order to develop a product sustainably, multiple analyses, including comprehensive environmental assessment, are required. Solar-assisted production of walnut husk methanolic extract (WHME) as a natural antioxidant for biodiesel was scrutinized by using the life cycle assessment (LCA) approach. More specifically, the environmental sustainability of WHME antioxidant was evaluated and compared to that of propyl gallate (PG), the most widely used synthetic biodiesel antioxidant, under two scenarios. Additionally, supplementary files including the inventory data consisting of raw data as well as elementary flows, mid-point, and end-point categories are presented. The analysis of scenarios revealed that the use of the natural antioxidant and the avoidance of the chemical antioxidant in biodiesel fuel could be regarded as an eco-friendly approach substantially enhancing the environmental friendliness of biodiesel in particular in terms of human health. Furthermore, given the waste-oriented nature of WHME, the scenario involved its application could serve as a promising strategy to simultaneously valorize the agro-waste and generate a value-added product; a move toward implementing the circular economy approach in the biodiesel industry.
  17. Yek PNY, Peng W, Wong CC, Liew RK, Ho YL, Wan Mahari WA, et al.
    J Hazard Mater, 2020 08 05;395:122636.
    PMID: 32298946 DOI: 10.1016/j.jhazmat.2020.122636
    We developed an innovative single-step pyrolysis approach that combines microwave heating and activation by CO2 or steam to transform orange peel waste (OPW) into microwave activated biochar (MAB). This involves carbonization and activation simultaneously under an inert environment. Using CO2 demonstrates dual functions in this approach, acting as purging gas to provide an inert environment for pyrolysis while activating highly porous MAB. This approach demonstrates rapid heating rate (15-120 °C/min), higher temperature (> 800 °C) and shorter process time (15 min) compared to conventional method using furnace (> 1 h). The MAB shows higher mass yield (31-44 wt %), high content of fixed carbon (58.6-61.2 wt %), Brunauer Emmett Teller (BET) surface area (158.5-305.1 m2/g), low ratio of H/C (0.3) and O/C (0.2). Activation with CO2 produces more micropores than using steam that generates more mesopores. Steam-activated MAB records a higher adsorption efficiency (136 mg/g) compared to CO2 activation (91 mg/g), achieving 89-93 % removal of Congo Red dye. The microwave pyrolysis coupled with steam or CO2 activation thereby represents a promising approach to transform fruit-peel waste to microwave-activated biochar that remove hazardous dye.
  18. Atarod P, Khlaife E, Aghbashlo M, Tabatabaei M, Hoang AT, Mobli H, et al.
    J Hazard Mater, 2021 Apr 05;407:124369.
    PMID: 33160782 DOI: 10.1016/j.jhazmat.2020.124369
    This study was set up to model and optimize the performance and emission characteristics of a diesel engine fueled with carbon nanoparticle-dosed water/‎diesel emulsion fuel using a combination of soft computing techniques. Adaptive neuro-fuzzy inference system tuned by particle ‎swarm algorithm was used for modeling the performance and emission parameters of the engine, while optimization of the engine operating parameters and the fuel composition was conducted via multiple-objective particle ‎swarm algorithm. The model input variables were: injection timing (35-41° CA BTDC), engine load (0-100%), nanoparticle dosage (0-150 μM), and water content (0-3 wt%). The model output variables included: brake specific fuel consumption, brake thermal efficiency, as well as carbon monoxide, carbon dioxide, nitrogen oxides, and unburned hydrocarbons emission concentrations. The training and testing of the modeling system were performed on the basis of 60 data patterns obtained from the experimental trials. The effects of input variables on the performance and emission characteristics of the engine were thoroughly analyzed and comprehensively discussed as well. According to the experimental results, injection timing and engine load could significantly affect all the investigated performance and emission parameters. Water and nanoparticle addition to diesel could markedly affect some performance and emission parameters. The modeling system could predict the output parameters with an R2 > 0.93, MSE 
  19. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, et al.
    Lancet, 2021 Jan 09;397(10269):129-170.
    PMID: 33278353 DOI: 10.1016/S0140-6736(20)32290-X
    TRANSLATIONS: For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links