Displaying all 6 publications

Abstract:
Sort:
  1. Nor FM, Lim JY, Tamin MN, Lee HY, Kurniawan D
    Polymers (Basel), 2020 Apr 14;12(4).
    PMID: 32295111 DOI: 10.3390/polym12040904
    The mechanics of damage and fracture process in unidirectional carbon fiber reinforced polymer (CFRP) composites subjected to shear loading (Mode II) were examined using the experimental method of the three-point end-notch flexure (3ENF) test. The CFRP composite consists of [0o]16 with an insert film in the middle plane for a starter defect. A 3ENF test sample with a span of 50 mm and interface delamination crack length of 12.5 mm was tested to yield the load vs. deformation response. A sudden load drop observed at maximum force value indicates the onset of delamination crack propagation. The results are used to extract the energy release rate, GIIC, of the laminates with an insert film starter defect. The effect of the starter defect on the magnitude of GIIC was examined using the CFRP composite sample with a Mode II delamination pre-crack. The higher magnitude of GIIC for the sample with insert film starter defect was attributed to the initial straight geometry of the notch/interface crack and the toughness of the resin at the notch front of the fabricated film insert. The fractured sample was examined using a micro-computerized tomography scanner to establish the shape of the internal delamination crack front. Results revealed that the interface delamination propagated in a non-uniform manner, leaving a curved-shaped crack profile.
  2. Wong KJ, Johar M, Koloor SSR, Petrů M, Tamin MN
    Polymers (Basel), 2020 Sep 22;12(9).
    PMID: 32971855 DOI: 10.3390/polym12092162
    It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.
  3. Koloor SSR, Rahimian-Koloor SM, Karimzadeh A, Hamdi M, Petrů M, Tamin MN
    Polymers (Basel), 2019 Sep 02;11(9).
    PMID: 31480660 DOI: 10.3390/polym11091435
    The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10-8 (aPa·nm-1), 9.75 × 10-10 (nm), 2.1 × 10-10 (N·nm-1) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface.
  4. R Koloor SS, Karimzadeh A, Abdullah MR, Petrů M, Yidris N, Sapuan SM, et al.
    Polymers (Basel), 2021 Jan 22;13(3).
    PMID: 33498984 DOI: 10.3390/polym13030344
    The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.
  5. Rahimian Koloor SS, Karimzadeh A, Yidris N, Petrů M, Ayatollahi MR, Tamin MN
    Polymers (Basel), 2020 Jan 07;12(1).
    PMID: 31936184 DOI: 10.3390/polym12010157
    Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE). Such a characteristic evolution curve is computed using a validated finite element model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber failure modes in angle lamina. The yield point of composite structures is identified to correspond to a 5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric MD FRP composite structures under flexural loading conditions are established based on Hashin unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria, in which the accumulation of energy dissipated due to all damage modes is less than 5% of the fracture energy required for the structural rupture.
  6. Azizan A, Johar M, Karam Singh SS, Abdullah S, Koloor SSR, Petrů M, et al.
    Polymers (Basel), 2021 Jan 30;13(3).
    PMID: 33573112 DOI: 10.3390/polym13030440
    Moisture absorption tests for materials that exhibit non-Fickian behavior generally require a relatively long period to reach saturation. Therefore, it would be beneficial to establish a relationship between the moisture content and the thickness to minimize the experimental time and cost. This research characterizes the moisture absorption behavior of AS4/8552 carbon/epoxy composites. Specimens were prepared at 4, 8, and 16 plies and immersed in distilled water at 60 °C. The relationship between the non-Fickian parameters (Fickian to non-Fickian maximum moisture content ratio ϕ, non-Fickian diffusivity per square thickness α, and non-Fickian initiation time to) and thickness was characterized using a thickness-dependent model. A comparison with other materials revealed that all three non-Fickian parameters are able to be fitted using a power law. Nevertheless, the upper boundary for the applicability of this model was not determined in this study. The Weibull distribution plots indicate that the probability of non-Fickian moisture absorption is influenced by ϕ and α at approximately 62% within a normalized thickness range of 2-3. In regards to to, it is 82% at a normalized thickness of 6. Therefore, the Weibull distribution is proposed for the assessment of non-Fickian moisture absorption based on the material's thickness.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links