Displaying all 2 publications

Abstract:
Sort:
  1. Chen YH, Chen HJ, Yang CY, Shiu JH, Hoh DZ, Chiang PW, et al.
    Environ Microbiol, 2021 Oct 27.
    PMID: 34708512 DOI: 10.1111/1462-2920.15824
    Terpios hoshinota is an aggressive, space-competing sponge that kills various stony corals. Outbreaks of this species have led to intense damage to coral reefs in many locations. Here, the first large-scale 16S rRNA gene survey across three oceans revealed that bacteria related to the taxa Prochloron, Endozoicomonas, SAR116, Ruegeria, and unclassified Proteobacteria were prevalent in T. hoshinota. A Prochloron-related bacterium was the most dominant and prevalent cyanobacterium in T. hoshinota. The complete genome of this uncultivated cyanobacterium and pigment analysis demonstrated that it has phycobiliproteins and lacks chlorophyll b, which is inconsistent with the definition of Prochloron. Furthermore, the cyanobacterium was phylogenetically distinct from Prochloron, strongly suggesting that it should be a sister taxon to Prochloron. Therefore, we proposed this symbiotic cyanobacterium as a novel species under the new genus Candidatus Paraprochloron terpiosi. Comparative genomic analyses revealed that 'Paraprochloron' and Prochloron exhibit distinct genomic features and DNA replication machinery. We also characterized the metabolic potentials of 'Paraprochloron terpiosi' in carbon and nitrogen cycling and propose a model for interactions between it and T. hoshinota. This study builds a foundation for the study of the T. hoshinota microbiome and paves the way for better understanding of ecosystems involving this coral-killing sponge.
  2. Darling ES, McClanahan TR, Maina J, Gurney GG, Graham NAJ, Januchowski-Hartley F, et al.
    Nat Ecol Evol, 2019 Sep;3(9):1341-1350.
    PMID: 31406279 DOI: 10.1038/s41559-019-0953-8
    Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links