Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Tang KS, Tan JS
    Eur J Pharmacol, 2019 Jan 05;842:133-138.
    PMID: 30385347 DOI: 10.1016/j.ejphar.2018.10.039
    The prevalence of stroke is high in both developing and developed nations. It causes a heavy social and financial burden to the sufferers and their caregivers. Thrombolytic therapy is the only pharmacological treatment available for stroke. However, thrombolytic agents do not provide substantial improvement on long term motor and cognitive disabilities. Thus, there is a need to explore for new compounds that can halt or reverse the deterioration of neurons in the stroke patients' brain. Polydatin, a precursor of resveratrol, is a natural stilbene commonly found in food. This review article describes how different parameters were altered with ischemic injury and polydatin treatment, why it is important and how it could be beneficial or useful in future studies. Our review of polydatin provides convincing evidence regarding the potential of polydatin to be developed into preventive or therapeutic products for ischemic stroke. Nevertheless, additional studies are necessary in order to properly elucidate the biological mechanisms of polydatin, especially its molecular mechanisms of protection and target proteins, in cerebral ischemia.
  2. Ling Tan JS, Roberts CJ, Billa N
    Pharm Dev Technol, 2019 Apr;24(4):504-512.
    PMID: 30132723 DOI: 10.1080/10837450.2018.1515225
    This study describes the properties of an amphotericin B-containing mucoadhesive nanostructured lipid carrier (NLC), with the intent to maximize uptake within the gastrointestinal tract. We have reported previously that lipid nanoparticles can significantly improve the oral bioavailability of amphotericin B (AmpB). On the other hand, the aggregation state of AmpB within the NLC has been ascribed to some of the side effects resulting from IV administration. In the undissolved state, AmpB (UAmpB) exhibited the safer monomeric conformation in contrast to AmpB in the dissolved state (DAmpB), which was aggregated. Chitosan-coated NLC (ChiAmpB NLC) presented a slightly slower AmpB release profile as compared to the uncoated formulation, achieving 26.1% release in 5 hours. Furthermore, the ChiAmpB NLC formulation appeared to prevent the expulsion of AmpB upon exposure to simulated gastrointestinal pH media, whereby up to 63.9% of AmpB was retained in the NLC compared to 56.1% in the uncoated formulation. The ChiAmpB NLC demonstrated mucoadhesive properties in pH 5.8 and 6.8. Thus, the ChiAmpB NLC formulation is well-primed for pharmacokinetic studies to investigate whether delayed gastrointestinal transit may be exploited to improve the systemic bioavailability of AmpB, whilst simultaneously addressing the side-effect concerns of AmpB.
  3. Tan JS, Ong Kc KC, Rhodes A
    Malays J Pathol, 2016 Aug;38(2):75-82.
    PMID: 27568663 MyJurnal
    Heat shock proteins (HSPs) are a family of evolutionary conserved proteins that work as molecular chaperones for cellular proteins essential for cell viability and growth as well as having numerous cyto-protective roles. They are sub-categorised based on their molecular weights; amongst which some of the most extensively studied are the HSP90 and HSP70 families. Important members of these two families; Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90), are the glucose regulated proteins (GRP). These stress-inducible chaperones possess distinct roles from that of the other HSPs, residing mostly in the endoplasmic reticulum and mitochondria, but they can also be translocated to other cellular locations. Their ability in adapting to stress conditions in the tumour microenvironment suggests novel functions in cancer. GRPs have been implicated in many crucial steps of carcinogenesis to include stabilization of oncogenic proteins, induction of tumour angiogenesis, inhibition of apoptosis and replicative senescence, and promotion of invasion and metastasis.
  4. Bashokouh F, Abbasiliasi S, Tan JS
    Cytotechnology, 2019 Jul 16.
    PMID: 31312930 DOI: 10.1007/s10616-019-00330-5
    Monoclonal antibody (McAb) has been established as one of the most successful therapeutic strategies for the treatment of cancer. M1A2 (McAb) as a new monoclonal antibody was designed to recognize heat shock protein (HSP60), but its optimum production condition has not been studied. In this study, the cell culture conditions for both Roswell Park Memorial Institute Medium (RPMI 1640) and Dulbecco's Modified Eagle Medium (DMEM) were optimized using artificial neural network (ANN) analysis to obtain maximum production of IgM McAb by hybridoma M1A2 cells. By using a central composite design, an experimental matrix with cultivation parameters of incubation time, temperature and fetal bovine serum (FBS) concentration on IgM McAb production was designed. The results was analysed by ANN network with different learning algorithms. From the analysis, batch back propagation (BBP) trained ANN composed of eight hidden nodes using a hyperbolic tangent sigmoid transfer function was capable to provide the highest McAb production for both RPMI and DMEM media. Under optimum conditions of 12.5% of FBS, at 33 °C after 3(1/2) days of incubation, maximum McAb production (1132.69 μg/ml) in DMEM was achieved. With PRMI 1640 medium, maximum McAb production (1105.12 μg/ml) was achieved at optimum conditions of 11% of FBS, at 33 °C after 4 days of incubation. The results of this study will provide information for optimum culture conditions of M1A2 McAb production in both DMEM and RPMI 1640 media and also give some clues for the other hybridoma excreting antibodies in the development of in vitro cell culture.
  5. Abu Bakar MH, Tan JS
    Biomed Pharmacother, 2017 Sep;93:903-912.
    PMID: 28715871 DOI: 10.1016/j.biopha.2017.07.021
    Compelling evidences posited that high level of saturated fatty acid gives rise to mitochondrial dysfunction and inflammation in the development of insulin resistance in skeletal muscle. Celastrol is a pentacyclic triterpenoid derived from the root extracts of Tripterygium wilfordii that possesses potent anti-inflammatory properties in a number of animal models with metabolic diseases. However, the cellular mechanistic action of celastrol in alleviating obesity-induced insulin resistance in skeletal muscle remains largely unknown. Therefore, the present investigation evaluated the attributive properties of celastrol at different concentrations (10, 20, 30 and 40nM) on insulin resistance in C2C12 myotubes evoked by palmitate. We demonstrated that celastrol improved mitochondrial functions through significant enhancement of intracellular ATP content, mitochondrial membrane potential, citrate synthase activity and decrease of mitochondrial superoxide productions. Meanwhile, augmented mitochondrial DNA (mtDNA) content with suppressed DNA oxidative damage were observed following celastrol treatment. Celastrol significantly enhanced fatty acid oxidation rate and increased the level of tricarboxylic acid (TCA) cycle intermediates in palmitate-treated cells. Further analysis revealed that the improvement of glucose uptake activity in palmitate-loaded myotubes was partly mediated by celastrol via activation of PI3K-Akt insulin signaling pathway. Collectively, these findings provided evidence for the first time that the protection from palmitate-mediated insulin resistance in C2C12 myotubes by celastrol is likely associated with the improvement of mitochondrial functions-related metabolic activities.
  6. Ojukwu M, Tan JS, Easa AM
    J Food Sci, 2020 Sep;85(9):2720-2727.
    PMID: 32776580 DOI: 10.1111/1750-3841.15357
    A process for enhancing textural and cooking properties of fresh rice flour-soy protein isolate noodles (RNS) to match those of yellow alkaline noodles (YAN) was developed by incorporating microbial transglutaminase (RNS-MTG), glucono-δ-lactone (RNS-GDL), and both MTG and GDL into the RNS noodles (RNS-COM). The formation of γ-glutamyl-lysine bonds in RNS-COM and RNS-MTG was shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Scanning electron microscope showed that compared to others, the structure of RNS-COM was denser, smoother with extensive apparent interconnectivity of aggregates. The optimum cooking time was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN (rice flour noodles); tensile strength was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN; and elasticity were in the order: YAN > RNS-COM > RNS-MTG, RNS-GDL > RN. Overall, RNS-COM showed similar textural and structural breakdown parameters as compared to those of YAN. Changes in microstructures and improvement of RNS-COM in certain properties were likely due to enhanced crosslinking of proteins attributed to MTG- and GDL-induced cold gelation of proteins at reduced pH value. It is possible to use the combination of MTG and GDL to improve textural and mechanical properties of RNS comparable to those of YAN. PRACTICAL APPLICATION: Combined MTG and GDL yield rice flour noodles with improved textural properties. The restructured rice flour noodles have the potential to replace yellow alkaline noodles.
  7. Hii SL, Tan JS, Ling TC, Ariff AB
    Enzyme Res, 2012;2012:921362.
    PMID: 22991654
    The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase.
  8. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
  9. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
  10. Othman NQ, Sulaiman S, Lee YP, Tan JS
    Data Brief, 2019 Aug;25:104288.
    PMID: 31453289 DOI: 10.1016/j.dib.2019.104288
    To date, Ganoderma boninense is known to be the causal agent of basal stem rot (BSR) disease in oil palm (Elaeis guineensis). This disease causes rotting in the roots, basal and upper stem of oil palm. Infection causes progressive destruction of the basal tissues at the oil palm trunk and internal dry rotting, particularly at the intersection between the bole and trunk. Molecular responses of oil palm during infection are not well study although this information is crucial to strategize effective measures to control or eliminate BSR. Here we report three sets of transcriptome data from samples of near-rot section of basal stem tissue of oil palm tree infected with G. boninense (IPIT), healthy section of basal stem tissue of the same G. boninense infected palm (IPHT) and the healthy section of basal stem tissue of the healthy palm (HPHT). The raw reads were deposited into NCBI database and can be accessed via BioProject accession number PRJNA530030.
  11. Sulaiman S, Othman NQ, Tan JS, Lee YP
    Data Brief, 2020 Apr;29:105167.
    PMID: 32025548 DOI: 10.1016/j.dib.2020.105167
    Ganoderma boninense is a soil-borne Basidiomycete pathogenic fungus that eminent as the key causal of devastating disease in oil palm, named basal stem rot. Being a threat to sustainable palm oil production, it is essential to comprehend the fundamental view of this fungus. However, there is gap of information due to its limited number of genome sequence that is available for this pathogenic fungus. This implies the hitches in performing biological research to unravel the mechanism underlying the pathogen attack in oil palm. Therefore, here we report a dataset of draft genome of G. boninense that was sequenced using Illumina Hiseq 2000. The raw reads were deposited into NCBI database (SRX7136614 and SRX7136615) and can be accessed via Bioproject accession number PRJNA503786.
  12. Tai WY, Tan JS, Lim V, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2781.
    PMID: 30701709 DOI: 10.1002/btpr.2781
    The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.
  13. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
  14. Abu Zarin M, Tan JS, Murugan P, Ahmad R
    BMC Complement Med Ther, 2020 Oct 19;20(1):317.
    PMID: 33076892 DOI: 10.1186/s12906-020-03113-0
    BACKGROUND: The banana or scientifically referred to as Musa sp., is one of the most popular fruits all over the world. Almost all parts of a banana tree, including the fruits, stem juice, and flowers are commonly used as traditional medicine for treating diarrhoea (unripe), menorrhagia, diabetes, dysentery, and antiulcerogenic, hypoglycemic, antilithic, hypolipidemic conditions, plus antioxidant actions, inflammation, pains and even snakebites. The study carried out was to evaluate in vitro anti-urolithiatic activity from different types of Musa pseudo-stems.

    METHODS: Observing anti-urolithiathic activity via in vitro nucleation and aggregation assay using a spectrophotometer followed by microscopic observation. A total of 12 methanolic extracts were tested to determine the potential extracts in anti-urolithiasis activities. Cystone was used as a positive control.

    RESULTS: The results manifested an inhibition of nucleation activity (0.11 ± 2.32% to 55.39 ± 1.01%) and an aggregation activity (4.34 ± 0.68% to 58.78 ± 1.81%) at 360 min of incubation time. The highest inhibition percentage in nucleation assay was obtained by the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic pseudo-stem extract (2D) which was 55.39 ± 1.01%at 60 min of incubation time compared to the cystone at 30.87 ± 0.74%. On the other hand,the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic bagasse extract (3D) had the highest inhibition percentage in the aggregation assay incubated at 360 min which was obtained at 58.78 ± 1.8%; 5.53% higher than the cystone (53.25%).The microscopic image showed a great reduction in the calcium oxalate (CaOx) crystals formation and the size of crystals in 2D and 3D extracts, respectively, as compared to negative control.

    CONCLUSIONS: The results obtained from this study suggest that the extracts are potential sources of alternative medicine for kidney stones disease.

  15. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
  16. Azaman SN, Ramakrishnan NR, Tan JS, Rahim RA, Abdullah MP, Ariff AB
    Biotechnol Appl Biochem, 2010 Aug;56(4):141-50.
    PMID: 20604747 DOI: 10.1042/BA20100104
    Induction strategies for the periplasmic production of recombinant human IFN-alpha2b (interferon-alpha2b) by recombinant Escherichia coli Rosetta-gami 2(DE3) were optimized in shake-flask cultures using response surface methodology based on the central composite design. The factors included in the present study were induction point, which related to the attenuance of the cell culture, IPTG (isopropyl beta-D-thiogalactoside) concentration and induction temperature. Second-order polynomial models were used to correlate the abovementioned factors to soluble periplasmic IFN-alpha2b formation and percentage of soluble IFN-alpha2b translocated to the periplasmic space of E. coli. The models were found to be significant and subsequently validated. The proposed induction strategies consisted of induction at an attenuance of 4 (measured as D600), IPTG concentration of 0.05 mM and temperature of 25 degrees C. The optimized induction strategy reduced inclusion-body formation as evidenced by electron microscopy and yielded 323.8 ng/ml of IFN-alpha2b in the periplasmic space with translocation of 74% of the total soluble product. In comparison with the non-optimized condition, soluble periplasmic production and the percentage of soluble IFN-alpha2b translocated to the periplasmic space obtained in optimized induction strategies were increased by approx. 20-fold and 1.4-fold respectively.
  17. Tan JS, Ambang T, Ahmad-Annuar A, Rajahram GS, Wong KT, Goh KJ
    Muscle Nerve, 2016 May;53(5):822-826.
    PMID: 26789281 DOI: 10.1002/mus.25037
    Choline acetyltransferase (CHAT) gene mutations cause a rare presynaptic congenital myasthenic syndrome due to impaired acetylcholine resynthesis.
  18. Koh KK, Tan JS, Nambiar P, Ibrahim N, Mutalik S, Khan Asif M
    J Forensic Leg Med, 2017 May;48:15-21.
    PMID: 28407514 DOI: 10.1016/j.jflm.2017.03.004
    Forensic odontology plays a vital role in the identification and age estimation of unknown deceased individuals. The purpose of this study is to estimate the chronological age from Cone-Beam Computed Tomography (CBCT) images by measuring the buccal alveolar bone level (ABL) to the cemento-enamel junction and to investigate the possibility of employing the age-related structural changes of teeth as studied by Gustafson. In addition, this study will determine the forensic reliability of employing CBCT images as a technique for dental age estimation. A total of 284 CBCT images of Malays and Chinese patients (150 females and 134 males), aged from 20 years and above were selected, measured and stages of age-related changes were recorded using the i-CAT Vision software. Lower first premolars of both left and right side of the jaw were chosen and the characteristics described by Gustafson, namely attrition, secondary dentine formation and periodontal recession were evaluated. Linear regression analysis was performed for the buccal bone level and the R values obtained were 0.85 and 0.82 for left and right side respectively. Gustafson's characteristics were analysed using multiple regression analysis with chronological age as the dependent variable. The results of the analysis showed R values ranged from 0.44 to 0.62. Therefore it can be safely concluded that the buccal bone level highly correlated with the chronological age and is consequently the most suitable age-related characteristic for forensic age estimation.
  19. Abbasiliasi S, Tan JS, Ibrahim TAT, Ramanan RN, Kadkhodaei S, Mustafa S, et al.
    J Food Sci Technol, 2018 Apr;55(4):1270-1284.
    PMID: 29606741 DOI: 10.1007/s13197-018-3037-x
    This paper deliberates the modelling and validation of bacteriocin-like inhibitory substance (BLIS) secretion by Pediococcus acidilactici Kp10 at different agitation speeds in a stirred tank bioreactor. A range of models namely the re-parameterised logistic, Luedeking-Piret and maintenance energy were assessed to predict the culture performance of the said bacterium. Growth of P. acidilactici Kp10 was enhanced with increased agitation speed up to 600 rpm while BLIS secretion was maximum at 400 rpm but decreased at higher agitation speed. Growth of P. acidilactici aptly subscribed to the re-parameterised logistic model while BLIS secretion and lactose consumption fitted well with the Luedeking-Piret model. The models revealed a relationship between growth of the bacterium and BLIS secretion. Bacterial growth and BLIS secretion were largely affected by the agitation speed of the stirred tank bioreactor which regulated the oxygen transfer to the culture. BLIS secretion by P. acidilactici Kp10 was however enhanced in oxygen-limited culture. The study also assessed BLIS from the perspective of its stability when subjected to factors such as temperature, pH and detergents. Results showed that BLIS produced by this strain was not affected by heat (at 25-100 °C for 20 min and at 121 °C for 15 min), surfactant (Tween 40, 60 and 80 and urea), detergents (up to 1% SDS), organic solvents (50% each of acetone, methanol and ethanol) and stable in a wide range of pH (2-10). The above information are pertinent with reference to commercial applications of this bacterial product in food manufacturing which invariably involve various sterilization processes and subjected to a wide pH range.
  20. Tan JS, Abbasiliasi S, Ariff AB, Ng HS, Bakar MHA, Chow YH
    3 Biotech, 2018 Jun;8(6):288.
    PMID: 29938157 DOI: 10.1007/s13205-018-1295-y
    This study aimed at recovery of thermostable lipase from Escherichia coli BL21 using porous glass beads grafted with polyethylene glycol (PEG) in aqueous impregnated resins system (AIRS). The influencing parameters such as concentration and pH of extraction solution, concentration of NaCl, size of the beads, and pH of the desorption solution on the partition behaviour of lipase were evaluated. Smaller adsorbent (4 mm) had a 65.5% of recovery yield with approximately two-fold higher purification factor compared to that obtained with the larger adsorbent. Recombinant lipase was purified successfully using AIRS with a purification factor of 7.6 and yield of 78.4% under optimum conditions of 18% (w/w) PEG 4000, 10% (w/w) of potassium citrate at pH 9 with 3% (w/w) of NaCl. Optimum desorption was obtained with 4.0 mm of porous glass beads at pH 9.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links