Displaying all 3 publications

Abstract:
Sort:
  1. Teh AY, Amerizadeh A, Osman S, Yunus MH, Noordin R
    Pathog Glob Health, 2016 Oct-Dec;110(7-8):277-286.
    PMID: 27697019
    The IgG avidity assay is an important tool in the management of suspected toxoplasmosis in pregnant women. This study aimed to produce new Toxoplasma gondii recombinant proteins and to assess their usefulness in an IgG avidity assay. Toxoplasma positive and negative serum samples were used, the former were categorized into low (LGA) and high (HGA) IgG avidity samples. Immunoblots were performed on 30 T. gondii cDNA clones to determine the reactivity and IgG avidity to the expressed proteins. Two of the clones were found to have diagnostic potential and were analyzed further; AG12b encoded T. gondii apical complex lysine methyltransferase (AKMT) protein and AG18 encoded T. gondii forkhead-associated (FHA) domain-containing protein. The His-tagged recombinant proteins, rAG12b and rAG18, were expressed and tested with LGA and HGA samples using an IgG avidity western blot and ELISA. With the IgG avidity western blot, rAG12b identified 86.4% of LGA and 90.9% of HGA samples, whereas rAG18 identified 81.8% of both LGA and HGA samples. With the IgG avidity ELISA, rAG12b identified 86.4% of both LGA and HGA samples, whereas rAG18 identified 77.3% of LGA and 86.4% of HGA serum samples. This study showed that the recombinant antigens were able to differentiate low avidity and high avidity serum samples, suggesting that they are potential candidates for use in the Toxoplasma IgG avidity assay.
  2. Amerizadeh A, Khoo BY, Teh AY, Golkar M, Abdul Karim IZ, Osman S, et al.
    BMC Infect Dis, 2013;13:287.
    PMID: 23800344 DOI: 10.1186/1471-2334-13-287
    Toxoplasma gondii is an obligate intracellular zoonotic parasite of the phylum Apicomplexa which infects a wide range of warm-blooded animals, including humans. In this study in-vivo induced antigens of this parasite was investigated using in-vivo induced antigen technology (IVIAT) and pooled sera from patients with serological evidence of acute infection.
  3. Amerizadeh A, Idris ZM, Khoo BY, Kotresha D, Yunus MH, Karim IZ, et al.
    Microb Pathog, 2013 Jan;54:60-6.
    PMID: 23044055 DOI: 10.1016/j.micpath.2012.09.006
    Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. Chronically-infected individuals with a compromised immune system are at risk for reactivation of the disease. In-vivo induced antigen technology (IVIAT) is a promising method for the identification of antigens expressed in-vivo. The aim of the present study was to apply IVIAT to identify antigens which are expressed in-vivo during T. gondii infection using sera from individuals with chronic toxoplasmosis. Forty serum samples were pooled, pre-adsorped against three different preparations of antigens, from each in-vitro grown T. gondii and Escherichia coli XLBlue MRF', and then used to screen a T. gondii cDNA expression library. Sequencing of DNA inserts from positive clones showed eight open reading frames with high homology to T. gondii genes. Expression analysis using quantitative real-time PCR showed that SAG1-related sequence 3 (SRS3) and two hypothetical genes were up-regulated in-vivo relative to their expression levels in-vitro. These three proteins also showed high sensitivity and specificity when tested with individual serum samples. Five other proteins namely M16 domain peptidase, microneme protein, elongation factor 1-alpha, pre-mRNA-splicing factor and small nuclear ribonucleoprotein F had lower RNA expression in-vivo as compared to in-vitro. SRS3 and the two hypothetical proteins warrant further investigation into their roles in the pathogenesis of toxoplasmosis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links